Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-γ and p53 signaling

Abstract

Interferon-γ (IFN-γ) engenders strong antiproliferative responses, in part through activation of p53. However, the long-known IFN-γ–dependent upregulation of human Trp-tRNA synthetase (TrpRS), a cytoplasmic enzyme that activates tryptophan to form Trp-AMP in the first step of protein synthesis, is unexplained. Here we report a nuclear complex of TrpRS with the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) and with poly(ADP-ribose) polymerase 1 (PARP-1), the major PARP in human cells. The IFN-γ–dependent poly(ADP-ribosyl)ation of DNA-PKcs (which activates its kinase function) and concomitant activation of the tumor suppressor p53 were specifically prevented by Trp-SA, an analog of Trp-AMP that disrupted the TrpRS–DNA-PKcs–PARP-1 complex. The connection of TrpRS to p53 signaling in vivo was confirmed in a vertebrate system. These and further results suggest an unexpected evolutionary expansion of the protein synthesis apparatus to a nuclear role that links major signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of DNA-PKcs and PARP-1 as nuclear interacting partners of TrpRS.
Figure 2: TrpRS facilitates the poly(ADP-ribosy)lation of DNA-PKcs.
Figure 3: TrpRS overexpression via transfection or IFN-γ stimulation activate DNA-PKcs and p53 by promoting DNA-PKcs PARylation.
Figure 4: Occupancy of TrpRS active site determines the WHEP domain conformation and dictates the DNA-PK–TrpRS–PARP-1 complex formation and associated activities.
Figure 5: TrpRS-mediated activation of p53 in zebrafish.
Figure 6: Illustration of the nuclear function of TrpRS.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ling, J., Reynolds, N. & Ibba, M. Aminoacyl-tRNA synthesis and translational quality control. Annu. Rev. Microbiol. 63, 61–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Carter, C.W. Jr. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62, 715–748 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Fleckner, J., Rasmussen, H.H. & Justesen, J. Human interferon γ potently induces the synthesis of a 55-kDa protein (γ2) highly homologous to rabbit peptide chain release factor and bovine tryptophanyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 88, 11520–11524 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Rubin, B.Y., Anderson, S.L., Xing, L., Powell, R.J. & Tate, W.P. Interferon induces tryptophanyl-tRNA synthetase expression in human fibroblasts. J. Biol. Chem. 266, 24245–24248 (1991).

    CAS  PubMed  Google Scholar 

  6. Bange, F.C., Flohr, T., Buwitt, U. & Bottger, E.C. An interferon-induced protein with release factor activity is a tryptophanyl-tRNA synthetase. FEBS Lett. 300, 162–166 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, G., Xu, Y., Chen, X. & Hu, G. IFITM1 plays an essential role in the antiproliferative action of interferon-γ. Oncogene 26, 594–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Lindner, D.J. Interferons as antiangiogenic agents. Curr. Oncol. Rep. 4, 510–514 (2002).

    Article  PubMed  Google Scholar 

  9. Kim, K.S., Kang, K.W., Seu, Y.B., Baek, S.H. & Kim, J.R. Interferon-γ induces cellular senescence through p53-dependent DNA damage signaling in human endothelial cells. Mech. Ageing Dev. 130, 179–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Sgadari, C. et al. Mig, the monokine induced by interferon-γ, promotes tumor necrosis in vivo. Blood 89, 2635–2643 (1997).

    CAS  PubMed  Google Scholar 

  11. Angiolillo, A.L. et al. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J. Exp. Med. 182, 155–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Wakasugi, K. et al. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc. Natl. Acad. Sci. USA 99, 173–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Kapoor, M. et al. Evidence for annexin II-S100A10 complex and plasmin in mobilization of cytokine activity of human TrpRS. J. Biol. Chem. 283, 2070–2077 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, Q. et al. Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality. Nat. Struct. Mol. Biol. 17, 57–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Guo, M., Yang, X.L. & Schimmel, P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat. Rev. Mol. Cell Biol. 11, 668–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sampath, P. et al. Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 119, 195–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Yannay-Cohen, N. et al. LysRS serves as a key signaling molecule in the immune response by regulating gene expression. Mol. Cell 34, 603–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Popenko, V.I. et al. Immunoelectron microscopic location of tryptophanyl-tRNA synthetase in mammalian, prokaryotic and archaebacterial cells. Eur. J. Cell Biol. 62, 248–258 (1993).

    CAS  PubMed  Google Scholar 

  19. Popenko, V.I., Cherni, N.E., Beresten, S.F., Zargarova, T.A. & Favorova, O.O. Immune electron microscope determination of the localization of tryptophanyl-tRNA-synthetase in bacteria and higher eukaryotes. Mol. Biol. (Mosk.) 23, 1669–1681 (1989).

    CAS  Google Scholar 

  20. Yang, X.L. et al. Functional and crystal structure analysis of active site adaptations of a potent anti-angiogenic human tRNA synthetase. Structure 15, 793–805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, X.L. et al. Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis. EMBO J. 25, 2919–2929 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, J., Shue, E., Ewalt, K.L. & Schimmel, P. A new γ-interferon–inducible promoter and splice variants of an anti-angiogenic human tRNA synthetase. Nucleic Acids Res. 32, 719–727 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sibanda, B.L., Chirgadze, D.Y. & Blundell, T.L. Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 463, 118–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Ariumi, Y. et al. Suppression of the poly(ADP-ribose) polymerase activity by DNA-dependent protein kinase in vitro. Oncogene 18, 4616–4625 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Ruscetti, T. et al. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J. Biol. Chem. 273, 14461–14467 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Weterings, E. & Chen, D.J. DNA-dependent protein kinase in nonhomologous end joining: a lock with multiple keys? J. Cell Biol. 179, 183–186 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin, S., Kharbanda, S., Mayer, B., Kufe, D. & Weaver, D.T. Binding of Ku and c-Abl at the kinase homology region of DNA-dependent protein kinase catalytic subunit. J. Biol. Chem. 272, 24763–24766 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Lees-Miller, S.P., Sakaguchi, K., Ullrich, S.J., Appella, E. & Anderson, C.W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell. Biol. 12, 5041–5049 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Woo, R.A., McLure, K.G., Lees-Miller, S.P., Rancourt, D.E. & Lee, P.W. DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature 394, 700–704 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Shieh, S.Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage–induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Beckert, S. et al. IGF-I-induced VEGF expression in HUVEC involves phosphorylation and inhibition of poly(ADP-ribose)polymerase. Biochem. Biophys. Res. Commun. 341, 67–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Teodoro, J.G., Parker, A.E., Zhu, X. & Green, M.R. p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313, 968–971 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Seburn, K.L., Nangle, L.A., Cox, G.A., Schimmel, P. & Burgess, R.W. An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot-Marie-Tooth 2D mouse model. Neuron 51, 715–726 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Grueneberg, D.A. et al. Kinase requirements in human cells: IV. Differential kinase requirements in cervical and renal human tumor cell lines. Proc. Natl. Acad. Sci. USA 105, 16490–16495 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, Y. et al. Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res. 66, 5354–5362 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Aggad, D. et al. In vivo analysis of Ifn-γ1 and Ifn-γ2 signaling in zebrafish. J. Immunol. 185, 6774–6782 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Sieger, D., Stein, C., Neifer, D., van der Sar, A.M. & Leptin, M. The role of γ interferon in innate immunity in the zebrafish embryo. Dis. Model Mech. 2, 571–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Berghmans, S. et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl. Acad. Sci. USA 102, 407–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Cao, L., Li, W., Kim, S., Brodie, S.G. & Deng, C.X. Senescence, aging and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev. 17, 201–213 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kishi, S. et al. The identification of zebrafish mutants showing alterations in senescence-associated biomarkers. PLoS Genet. 4, e1000152 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sidi, S. et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2 and caspase-3. Cell 133, 864–877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takaoka, A. et al. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516–523 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Yoshida, R., Imanishi, J., Oku, T., Kishida, T. & Hayaishi, O. Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc. Natl. Acad. Sci. USA 78, 129–132 (1981).

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida, R., Urade, Y., Tokuda, M. & Hayaishi, O. Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection. Proc. Natl. Acad. Sci. USA 76, 4084–4086 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Chen (University of Texas Southwestern Medical School) for the DNA-PKcs clone and P. Chang (Massachusetts Institute of Technology) for the ZZ-PARP-1 clone. This work was supported by grants GM15539 and GM23562 (to P.S.) and GM088278 (to X.-L.Y.) from the US National Institutes of Health and by a fellowship from the National Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

M.S., Q.Z., S.K., D.M.V. Jr., M.K., M.G., S.L., S.K., X.-L.Y. and P.S. designed research; M.S., Q.Z., S.K., D.M.V. Jr., M.K. and S.L. carried out experiments; M.S., Q.Z., S.K., D.M.V. Jr., M.K., S.L., X.-L.Y. and P.S. analyzed data; and M.S., Q.Z., S.K., X.-L.Y. and P.S. wrote the paper.

Corresponding author

Correspondence to Paul Schimmel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajish, M., Zhou, Q., Kishi, S. et al. Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-γ and p53 signaling. Nat Chem Biol 8, 547–554 (2012). https://doi.org/10.1038/nchembio.937

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing