Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disease-specific non–reducing end carbohydrate biomarkers for mucopolysaccharidoses

Abstract

A considerable need exists for improved biomarkers for differential diagnosis, prognosis and monitoring of therapeutic interventions for mucopolysaccharidoses (MPS), inherited metabolic disorders that involve lysosomal storage of glycosaminoglycans. Here we report a simple, reliable method based on the detection of abundant nonreducing ends of the glycosaminoglycans that accumulate in cells, blood and urine of individuals with MPS. In this method, glycosaminoglycans are enzymatically depolymerized, releasing unique mono-, di- or trisaccharides from the nonreducing ends of the chains. The composition of the released mono- and oligosaccharides depends on the nature of the lysosomal enzyme deficiency, and therefore they serve as diagnostic biomarkers. Analysis by LC/MS allowed qualitative and quantitative assessment of the biomarkers in biological samples. We provide a simple conceptual scheme for diagnosing MPS in uncharacterized samples and a method to monitor efficacy of enzyme replacement therapy or other forms of treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for determining nonreducing ends and internal disaccharides.
Figure 2: MPS non–reducing end carbohydrates.
Figure 3: Analysis of nonreducing ends found in MPS I and Sanfilippo heparan sulfate.
Figure 4: Systematic diagnostic screening of GAG samples for various MPS disorders.
Figure 5: Comparison of total heparan sulfate to N-sulfoglucosamine (S0) in MPS IIIA samples.

Similar content being viewed by others

References

  1. Neufeld, E.F. & Muenzer, J. The mucopolysaccharidoses. in Metabolic and Molecular Basis of Inherited Disease Vol. 3 (eds. Scriver, C.R. et al.) 3421–3452 (MacGraw-Hill, 2001).

  2. Clarke, L.A. The mucopolysaccharidoses: a success of molecular medicine. Expert Rev. Mol. Med. 10, e1 (2008).

    Article  Google Scholar 

  3. Beck, M. Therapy for lysosomal storage disorders. IUBMB Life 62, 33–40 (2010).

    CAS  PubMed  Google Scholar 

  4. Wei, W., Ninonuevo, M.R., Sharma, A., Danan-Leon, L.M. & Leary, J.A. A comprehensive compositional analysis of heparin/heparan sulfate-derived disaccharides from human serum. Anal. Chem. 83, 3703–3708 (2011).

    Article  CAS  Google Scholar 

  5. Tomatsu, S. et al. Dermatan sulfate and heparan sulfate as a biomarker for mucopolysaccharidosis I. J. Inherit. Metab. Dis. 33, 141–150 (2010).

    Article  CAS  Google Scholar 

  6. Tomatsu, S. et al. Heparan sulfate levels in mucopolysaccharidoses and mucolipidoses. J. Inherit. Metab. Dis. 28, 743–757 (2005).

    Article  CAS  Google Scholar 

  7. Fuller, M., Chau, A., Nowak, R.C., Hopwood, J.J. & Meikle, P.J. A defect in exodegradative pathways provides insight into endodegradation of heparan and dermatan sulfates. Glycobiology 16, 318–325 (2006).

    Article  CAS  Google Scholar 

  8. Fuller, M., Meikle, P.J. & Hopwood, J.J. Glycosaminoglycan degradation fragments in mucopolysaccharidosis I. Glycobiology 14, 443–450 (2004).

    Article  CAS  Google Scholar 

  9. Holley, R.J. et al. Mucopolysaccharidosis type I: unique structure of accumulated heparan sulfate and increased N-sulfotransferase activity in mice lacking α-l-iduronidase. J. Biol. Chem. 286, 37515–37524 (2011).

    Article  CAS  Google Scholar 

  10. Freeze, H.H. Genetic disorders of glycan degradation. in Essentials of Glycobiology (eds. Varki, A. et al.) 567–583 (Cold Spring Harbor Laboratory Press, 2009).

  11. Lawrence, R. et al. Evolutionary differences in glycosaminoglycan fine structure detected by quantitative glycan reductive isotope labeling. J. Biol. Chem. 283, 33674–33684 (2008).

    Article  CAS  Google Scholar 

  12. Xia, B., Feasley, C.L., Sachdev, G.P., Smith, D.F. & Cummings, R.D. Glycan reductive isotope labeling for quantitative glycomics. Anal. Biochem. 387, 162–170 (2009).

    Article  CAS  Google Scholar 

  13. Linhardt, R.J. Analysis of glycosaminoglycans with polysaccharide lyases. Curr. Protoc. Mol. Biol. 48, 17.13B1–17.13B16 (2001).

    Google Scholar 

  14. Lawrence, R., Lu, H., Rosenberg, R.D., Esko, J.D. & Zhang, L. Disaccharide structure code for the easy representation of constituent oligosaccharides from glycosaminoglycans. Nat. Methods 5, 291–292 (2008).

    Article  CAS  Google Scholar 

  15. Lamanna, W.C., Lawrence, R., Sarrazin, S. & Esko, J.D. Secondary storage of dermatan sulfate in Sanfilippo disease. J. Biol. Chem. 286, 6955–6962 (2011).

    Article  CAS  Google Scholar 

  16. Esko, J.D. & Lindahl, U. Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169–173 (2001).

    Article  CAS  Google Scholar 

  17. Sjöberg, I., Fransson, L.A., Matalon, R. & Dorfman, A. Hunter's syndrome: a deficiency of L-idurono-sulfate sulfatase. Biochem. Biophys. Res. Commun. 54, 1125–1132 (1973).

    Article  Google Scholar 

  18. O'Brien, J.F., Cantz, M. & Spranger, J. Maroteaux-Lamy disease (mucopolysaccharidosis VI), subtype A: deficiency of a N-acetylgalactosamine-4-sulfatase. Biochem. Biophys. Res. Commun. 60, 1170–1177 (1974).

    Article  CAS  Google Scholar 

  19. Kimura, A., Hayashi, S. & Tsurumi, K. Chemical structure of urinary dermatan sulfate excreted by a patient with the Hunter syndrome. Tohoku J. Exp. Med. 131, 241–247 (1980).

    Article  CAS  Google Scholar 

  20. Kimura, A., Hayashi, S., Koseki, M. & Tsurumi, K. Characteristics of urinary glycosaminoglycans excreted by a patient with the Hurler-Scheie compound syndrome. Tohoku J. Exp. Med. 136, 61–66 (1982).

    Article  CAS  Google Scholar 

  21. Kimura, A., Hayashi, S., Koseki, M., Kochi, H. & Tsurumi, K. Fractionation and characterization of urinary heparan sulfate excreted by patients with Sanfilippo syndrome. Tohoku J. Exp. Med. 144, 227–236 (1984).

    Article  CAS  Google Scholar 

  22. Toma, L., Dietrich, C.P. & Nader, H.B. Differences in the nonreducing ends of heparan sulfates excreted by patients with mucopolysaccharidoses revealed by bacterial heparitinases: A new tool for structural studies and differential diagnosis of Sanfilippo's and Hunter's syndromes. Lab. Invest. 75, 771–781 (1996).

    CAS  PubMed  Google Scholar 

  23. Ramsay, S.L., Meikle, P.J. & Hopwood, J.J. Determination of monosaccharides and disaccharides in mucopolysaccharidoses patients by electrospray ionisation mass spectrometry. Mol. Genet. Metab. 78, 193–204 (2003).

    Article  CAS  Google Scholar 

  24. King, B., Savas, P., Fuller, M., Hopwood, J. & Hemsley, K. Validation of a heparan sulfate-derived disaccharide as a marker of accumulation in murine mucopolysaccharidosis type IIIA. Mol. Genet. Metab. 87, 107–112 (2006).

    Article  CAS  Google Scholar 

  25. Mason, K.E., Meikle, P.J., Hopwood, J.J. & Fuller, M. Characterization of sulfated oligosaccharides in mucopolysaccharidosis type IIIA by electrospray ionization mass spectrometry. Anal. Chem. 78, 4534–4542 (2006).

    Article  CAS  Google Scholar 

  26. Byers, S., Rozaklis, T., Brumfield, L.K., Ranieri, E. & Hopwood, J.J. Glycosaminoglycan accumulation and excretion in the mucopolysaccharidoses: characterization and basis of a diagnostic test for MPS. Mol. Genet. Metab. 65, 282–290 (1998).

    Article  CAS  Google Scholar 

  27. Bhaumik, M. et al. A mouse model for mucopolysaccharidosis type III A (Sanfilippo syndrome). Glycobiology 9, 1389–1396 (1999).

    Article  CAS  Google Scholar 

  28. Oguma, T., Tomatsu, S., Montano, A.M. & Okazaki, O. Analytical method for the determination of disaccharides derived from keratan, heparan, and dermatan sulfates in human serum and plasma by high-performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry. Anal. Biochem. 368, 79–86 (2007).

    Article  CAS  Google Scholar 

  29. Nielsen, T.C., Rozek, T., Hopwood, J.J. & Fuller, M. Determination of urinary oligosaccharides by high-performance liquid chromatography/electrospray ionization-tandem mass spectrometry: application to Hunter syndrome. Anal. Biochem. 402, 113–120 (2010).

    Article  CAS  Google Scholar 

  30. Peterson, S.B. & Liu, J. Unraveling the specificity of heparanase utilizing synthetic substrates. J. Biol. Chem. 285, 14504–14513 (2010).

    Article  CAS  Google Scholar 

  31. Kaneiwa, T., Mizumoto, S., Sugahara, K. & Yamada, S. Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology 20, 300–309 (2010).

    Article  CAS  Google Scholar 

  32. Shi, X. & Zaia, J. Organ-specific heparan sulfate structural phenotypes. J. Biol. Chem. 284, 11806–11814 (2009).

    Article  CAS  Google Scholar 

  33. Kresse, H., Paschke, E., von Figura, K., Gilberg, W. & Fuchs, W. Sanfilippo disease type D: deficiency of N-acetylglucosamine-6-sulfate sulfatase required for heparan sulfate degradation. Proc. Natl. Acad. Sci. USA 77, 6822–6826 (1980).

    Article  CAS  Google Scholar 

  34. He, W., Voznyi Ya, V., Boer, A.M., Kleijer, W.J. & van Diggelen, O.P. A fluorimetric enzyme assay for the diagnosis of Sanfilippo disease type D (MPS IIID). J. Inherit. Metab. Dis. 16, 935–941 (1993).

    Article  CAS  Google Scholar 

  35. Dean, C.J., Bockmann, M.R., Hopwood, J.J., Brooks, D.A. & Meikle, P.J. Detection of mucopolysaccharidosis type II by measurement of iduronate-2-sulfatase in dried blood spots and plasma samples. Clin. Chem. 52, 643–649 (2006).

    Article  CAS  Google Scholar 

  36. Blanchard, S., Sadilek, M., Scott, C.R., Turecek, F. & Gelb, M.H. Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis I. Clin. Chem. 54, 2067–2070 (2008).

    Article  CAS  Google Scholar 

  37. Wolfe, B.J. et al. Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis II (Hunter Syndrome). Anal. Chem. 83, 1152–1156 (2011).

    Article  CAS  Google Scholar 

  38. Duffey, T.A. et al. A tandem mass spectrometry triplex assay for the detection of Fabry, Pompe, and mucopolysaccharidosis-I (Hurler). Clin. Chem. 56, 1854–1861 (2010).

    Article  CAS  Google Scholar 

  39. Camelier, M.V. et al. Practical and reliable enzyme test for the detection of Mucopolysaccharidosis IVA (Morquio Syndrome type A) in dried blood samples. Clin. Chim. Acta 412, 1805–1808 (2011).

    Article  CAS  Google Scholar 

  40. Fuller, M. et al. Screening patients referred to a metabolic clinic for lysosomal storage disorders. J. Med. Genet. 48, 422–425 (2011).

    Article  Google Scholar 

  41. Zhou, H., Fernhoff, P. & Vogt, R.F. Newborn bloodspot screening for lysosomal storage disorders. J. Pediatr. 159, 7–13.e1 (2011).

    Article  Google Scholar 

  42. Komosińska-Vassev, K.B., Winsz-Szczotka, K., Kuznik-Trocha, K., Olczyk, P. & Olczyk, K. Age-related changes of plasma glycosaminoglycans. Clin. Chem. Lab. Med. 46, 219–224 (2008).

    Article  Google Scholar 

  43. Varki, A. et al. Symbol nomenclature for glycan representation. Proteomics 9, 5398–5399 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health grants R01 GM077471 to J.D.E. and P41 RR005351 to G.J.B. for synthesis of disaccharide standards, a Kirschstein National Research Service Award DK085905 to W.C.L. and grants from the National MPS Society to J.D.E. and B.E.C.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by B.E.C., J.R. Brown and J.D.E. Execution and interpretation of nonreducing-end analysis was carried out by R.L. and W.C.L. Carbohydrate standards were synthesized by K.A.-M. and G.-J.B. The manuscript was written by R.L., W.C.L., J.R. Beitel, B.E.C. and J.D.E.

Corresponding authors

Correspondence to Jeffrey D Esko or Brett E Crawford.

Ethics declarations

Competing interests

B.E. Crawford, J.R. Brown and J.R. Beitel are employees of and hold equity positions in Zacharon Pharmaceuticals, Inc. J.D. Esko is a founder of and has an equity position in Zacharon Pharmaceuticals, Inc, and both he and R. Lawrence consult with the company.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Methods (PDF 2223 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, R., Brown, J., Al-Mafraji, K. et al. Disease-specific non–reducing end carbohydrate biomarkers for mucopolysaccharidoses. Nat Chem Biol 8, 197–204 (2012). https://doi.org/10.1038/nchembio.766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.766

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing