Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Choosing an effective protein bioconjugation strategy

Abstract

The collection of chemical techniques that can be used to attach synthetic groups to proteins has expanded substantially in recent years. Each of these approaches allows new protein targets to be addressed, leading to advances in biological understanding, new protein-drug conjugates, targeted medical imaging agents and hybrid materials with complex functions. The protein modification reactions in current use vary widely in their inherent site selectivity, overall yields and functional group compatibility. Some are more amenable to large-scale bioconjugate production, and a number of techniques can be used to label a single protein in a complex biological mixture. This review examines the way in which experimental circumstances influence one's selection of an appropriate protein modification strategy. It also provides a simple decision tree that can narrow down the possibilities in many instances. The review concludes with example studies that examine how this decision process has been applied in different contexts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Generation of targeted delivery agents through the dual surface labeling of MS2 viral capsids.
Figure 3: An enzyme-based strategy for the fluorescent labeling of two different proteins on a live cell surface.

Similar content being viewed by others

References

  1. Albery, W.J. & Knowles, J.R. Free-energy profile for the reaction catalyzed by triosephosphate isomerase. Biochemistry 15, 5627–5631 (1976).

    CAS  PubMed  Google Scholar 

  2. Nelson, N. & Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971–982 (2004).

    CAS  PubMed  Google Scholar 

  3. White, M.A. & Anderson, R.G. Signaling networks in living cells. Annu. Rev. Pharmacol. Toxicol. 45, 587–603 (2005).

    CAS  PubMed  Google Scholar 

  4. Honjo, T. & Habu, S. Origin of immune diversity: genetic variation and selection. Annu. Rev. Biochem. 54, 803–830 (1985).

    CAS  PubMed  Google Scholar 

  5. Buehler, M.J. & Yung, Y.C. How protein materials balance strength, robustness, and adaptability. HFSP J. 4, 26–40 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pauly, H. On the constitution of histidine I: announcement. Hoppe Seylers Z. Physiol. Chem. 42, 508–518 (1904).

    Google Scholar 

  7. Alley, S.C., Okeley, N.M. & Senter, P.D. Antibody-drug conjugates: targeted drug delivery for cancer. Curr. Opin. Chem. Biol. 14, 529–537 (2010).

    CAS  PubMed  Google Scholar 

  8. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008).

    CAS  PubMed  Google Scholar 

  9. Cecconi, C., Shank, E.A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005).

    CAS  PubMed  Google Scholar 

  10. Stephanopoulos, N., Tong, G.J., Hsiao, S.C. & Francis, M.B. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. ACS Nano 4, 6014–6020 (2010).

    CAS  PubMed  Google Scholar 

  11. Banerjee, D., Liu, A.P., Voss, N.R., Schmid, S.L. & Finn, M.G. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. ChemBioChem 11, 1273–1279 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified staudinger reaction. Science 287, 2007–2010 (2000).

    CAS  PubMed  Google Scholar 

  13. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002).

    CAS  PubMed  Google Scholar 

  14. Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    CAS  PubMed  Google Scholar 

  15. Hong, V., Steinmetz, N.F., Manchester, M. & Finn, M.G. Labeling live cells by copper-catalyzed alkyne-azide Click chemistry. Bioconjug. Chem. 21, 1912–1916 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Speers, A.E., Adam, G.C. & Cravatt, B.F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    CAS  PubMed  Google Scholar 

  17. Agard, N.J., Prescher, J.A. & Bertozzi, C.R.A. Strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    CAS  PubMed  Google Scholar 

  18. Agard, N.J., Baskin, J.M., Prescher, J.A., Lo, A. & Bertozzi, C.R. A comparative study of bioorthogonal reactions with azides. ACS Chem. Biol. 1, 644–648 (2006).

    CAS  PubMed  Google Scholar 

  19. Laughlin, S.T., Baskin, J.M., Amacher, S.L. & Bertozzi, C.R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jencks, W.P. Studies on the mechanism of oxime and semicarbazone formation. J. Am. Chem. Soc. 81, 475–481 (1959).

    CAS  Google Scholar 

  21. Cornish, V.W., Hahn, K.M. & Schultz, P.G. Site-specific protein modification using a ketone handle. J. Am. Chem. Soc. 118, 8150–8151 (1996).

    CAS  Google Scholar 

  22. Mahal, L.K., Yarema, K.J. & Bertozzi, C.R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    CAS  PubMed  Google Scholar 

  23. Dirksen, A., Hackeng, T.M. & Dawson, P.E. Nucleophilic catalysis of oxime ligation. Angew. Chem. Int. Ed. Engl. 45, 7581–7584 (2006).

    CAS  PubMed  Google Scholar 

  24. Kalia, J. & Raines, R. Hydrolytic stability of hydrazones and oximes. Angew. Chem. Int. Ed. Engl. 47, 7523–7526 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sletten, E.M. & Bertozzi, C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48, 6974–6998 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hermanson, G.T. Bioconjugate Techniques, 2nd edn. (Academic Press, 2008).

    Google Scholar 

  27. Tilley, S.D., Joshi, N.S. & Francis, M.B. Proteins: chemistry and chemical reactivity. in Wiley Encyclopedia of Chemical Biology 1–16 (Wiley, 2008).

    Google Scholar 

  28. Baker, D.P. et al. N-terminally pegylated human interferon-β-1a with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. Bioconjug. Chem. 17, 179–188 (2006).

    CAS  PubMed  Google Scholar 

  29. Cooper, J.A., Walker, S.B. & Pollard, T.D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J. Muscle Res. Cell Motil. 4, 253–262 (1983).

    CAS  PubMed  Google Scholar 

  30. Antos, J.M. & Francis, M.B. Selective tryptophan modification with rhodium carbenoids in aqueous solution. J. Am. Chem. Soc. 126, 10256–10257 (2004).

    CAS  PubMed  Google Scholar 

  31. Popp, B.V. & Ball, Z.T. Structure-selective modification of aromatic side chains with dirhodium metallopeptide catalysts. J. Am. Chem. Soc. 132, 6660–6662 (2010).

    CAS  PubMed  Google Scholar 

  32. Hooker, J.M., Kovacs, E.W. & Francis, M.B. Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc. 126, 3718–3719 (2004).

    CAS  PubMed  Google Scholar 

  33. Joshi, N.S., Whitaker, L.R. & Francis, M.B. Three-component mannich-type reaction for selective tyrosine bioconjugation. J. Am. Chem. Soc. 126, 15942–15943 (2004).

    CAS  PubMed  Google Scholar 

  34. Tilley, S.D. & Francis, M.B. Tyrosine-selective protein alkylation using p-allylpalladium complexes. J. Am. Chem. Soc. 128, 1080–1081 (2006).

    CAS  PubMed  Google Scholar 

  35. Chalker, J.M., Bernardes, G.J.L., Lin, Y.A. & Davis, B.G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. Asian J. 4, 630–640 (2009).

    CAS  PubMed  Google Scholar 

  36. Doolittle, R.F. Redundancies in protein sequence. in Prediction of Protein Structures and the Principles of Protein Conformation (ed. Fasman, G.D.) 599–624 (Plenum Press, 1989).

    Google Scholar 

  37. Bernardes, G.J., Chalker, J.M., Errey, J.C. & Davis, B.G. Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. J. Am. Chem. Soc. 130, 5052–5053 (2008).

    CAS  PubMed  Google Scholar 

  38. Bernardes, G.J.L. et al. From disulfide- to thioether-linked glycoproteins. Angew. Chem. Int. Ed. Engl. 47, 2244–2247 (2008).

    CAS  PubMed  Google Scholar 

  39. Lin, Y.A., Chalker, J.M., Floyd, N., Bernardes, G.J.L. & Davis, B.G. Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. J. Am. Chem. Soc. 130, 9642–9643 (2008).

    CAS  PubMed  Google Scholar 

  40. Smith, M.E.B. et al. Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 132, 1960–1965 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ryan, C.P. et al. Tunable reagents for multi-functional bioconjugation: reversible or permanent chemical modification of proteins and peptides by control of maleimide hydrolysis. Chem. Commun. (Camb.) 47, 5452–5454 (2011).

    CAS  Google Scholar 

  42. Geoghegan, K.F. & Stroh, J.G. Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate-oxidation of a 2-amino alcohol—application to modification at N-terminal serine. Bioconjug. Chem. 3, 138–146 (1992).

    CAS  PubMed  Google Scholar 

  43. Gilmore, J.M., Scheck, R.A., Esser-Kahn, A.P., Joshi, N.S. & Francis, M.B. N-terminal protein modification through a biomimetic transamination reaction. Angew. Chem. Int. Ed. Engl. 45, 5307–5311 (2006).

    CAS  PubMed  Google Scholar 

  44. Scheck, R.A., Dedeo, M.T., Iavarone, A.T. & Francis, M.B. Optimization of a biomimetic transamination reaction. J. Am. Chem. Soc. 130, 11762–11770 (2008).

    CAS  PubMed  Google Scholar 

  45. Witus, L.S. et al. Identification of highly reactive sequences for PLP-mediated bioconjugation using a combinatorial peptide library. J. Am. Chem. Soc. 132, 16812–16817 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tam, J.P., Yu, Q.T. & Miao, Z.W. Orthogonal ligation strategies for peptide and protein. Biopolymers 51, 311–332 (1999).

    CAS  PubMed  Google Scholar 

  47. Li, X.F., Zhang, L.S., Hall, S.E. & Tam, J.P. A new ligation method for N-terminal tryptophan-containing peptides using the Pictet-Spengler reaction. Tetrahedron Lett. 41, 4069–4073 (2000).

    CAS  Google Scholar 

  48. Hirel, P.H., Schmitter, M.J., Dessen, P., Fayat, G. & Blanquet, S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. USA 86, 8247–8251 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dawson, P.E., Muir, T., Clark-Lewis, I. & Kent, S. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    CAS  PubMed  Google Scholar 

  50. Muir, T.W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    CAS  PubMed  Google Scholar 

  51. Tolbert, T.J. & Wong, C. Intein-mediated synthesis of proteins containing carbohydrates and other molecular probes. J. Am. Chem. Soc. 122, 5421–5428 (2000).

    CAS  Google Scholar 

  52. Valiyaveetil, F.I., Sekedat, M., MacKinnon, R. & Muir, T.W. Glycine as a D-amino acid surrogate in the k-selectivity filter. Proc. Natl. Acad. Sci. USA 101, 17045–17049 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu, R., Ayers, B., Cowburn, D. & Muir, T.W. Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc. Natl. Acad. Sci. USA 96, 388–393 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ottesen, J.J., Huse, M., Sekedat, M.D. & Muir, T.W. Semisynthesis of phosphovariants of Smad2 reveals a substrate preference of the activated TßRI kinase. Biochemistry 43, 5698–5706 (2004).

    CAS  PubMed  Google Scholar 

  55. Kho, Y. et al. Tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. USA 101, 12479–12484 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Duckworth, B.P., Xu, J., Taton, T.A., Guo, A. & Distefano, M.D. Site-specific, covalent attachment of proteins to a solid surface. Bioconjug. Chem. 17, 967–974 (2006).

    CAS  PubMed  Google Scholar 

  57. Gauchet, C., Labadie, G.R. & Poulter, C.D. Regio- and chemoselective covalent immobilization of proteins through unnatural amino acids. J. Am. Chem. Soc. 128, 9274–9275 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xie, J. & Schultz, P.G. A chemical toolkit for proteins: an expanded genetic code. Nat. Rev. Mol. Cell Biol. 7, 775–782 (2006).

    CAS  PubMed  Google Scholar 

  59. Link, A.J., Mock, M.L. & Tirrell, D.A. Non-canonical amino acids in protein engineering. Curr. Opin. Biotechnol. 14, 603–609 (2003).

    CAS  PubMed  Google Scholar 

  60. Deiters, A. et al. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J. Am. Chem. Soc. 125, 11782–11783 (2003).

    CAS  PubMed  Google Scholar 

  61. Kiick, K.L., Saxon, E., Tirrell, D.A. & Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 99, 19–24 (2002).

    CAS  PubMed  Google Scholar 

  62. Strable, E. et al. Unnatural amino acid incorporation into virus-like particles. Bioconjug. Chem. 19, 866–875 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. van Hest, J.C.M., Kiick, K.L. & Tirrell, D.A. Efficient incorporation of unsaturated methionine analogues into proteins in vivo. J. Am. Chem. Soc. 122, 1282–1288 (2000).

    CAS  Google Scholar 

  64. Mehl, R.A. et al. Generation of a bacterium with a 21 amino acid genetic code. J. Am. Chem. Soc. 125, 935–939 (2003).

    CAS  PubMed  Google Scholar 

  65. Carrico, Z.M., Romanini, D.W., Mehl, R.A. & Francis, M.B. Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. Chem. Commun. (Camb.) 1205–1207 (2008).

  66. Beatty, K.E. et al. Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne cycloaddition. ChemBioChem 11, 2092–2095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, H.S., Guo, J., Lemke, E.A., Dimla, R.D. & Schultz, P.G. Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J. Am. Chem. Soc. 131, 12921–12923 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chin, J.W., Martin, A.B., King, D.S., Wang, L. & Schultz, P.G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 11020–11024 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gautier, A., Deiters, A. & Chin, J.W. Light-activated kinases enable temporal dissection of signaling networks in living cells. J. Am. Chem. Soc. 133, 2124–2127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Evans, M.J. & Cravatt, B.F. Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279–3301 (2006).

    CAS  PubMed  Google Scholar 

  71. Tsukiji, S., Miyagawa, M., Takaoka, Y., Tamura, T. & Hamachi, I. Ligand-directed tosyl chemistry for protein labeling in vivo. Nat. Chem. Biol. 5, 341–343 (2009).

    CAS  PubMed  Google Scholar 

  72. Hughes, C.C. et al. Marinopyrrole A target elucidation by acyl dye transfer. J. Am. Chem. Soc. 131, 12094–12096 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Koshi, Y. et al. Target-specific chemical acylation of lectins by ligand-tethered DMAP catalysts. J. Am. Chem. Soc. 130, 245–251 (2008).

    CAS  PubMed  Google Scholar 

  74. Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).

    CAS  PubMed  Google Scholar 

  75. Sato, H., Ikeda, M., Suzuki, K. & Hirayama, K. Site-specific modification of interleukin-2 by the combined use of genetic engineering techniques and transglutaminase. Biochemistry 35, 13072–13080 (1996).

    CAS  PubMed  Google Scholar 

  76. Fernández-Suárez, M. et al. Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat. Biotechnol. 25, 1483–1487 (2007).

    PubMed  PubMed Central  Google Scholar 

  77. Popp, M.W., Antos, J.M., Grotenbreg, G.M., Spooner, E. & Ploegh, H.L. Sortagging: a versatile method for protein labeling. Nat. Chem. Biol. 3, 707–708 (2007).

    CAS  PubMed  Google Scholar 

  78. Zhou, Z. et al. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem. Biol. 22, 337–346 (2007).

    Google Scholar 

  79. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    CAS  PubMed  Google Scholar 

  80. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    CAS  PubMed  Google Scholar 

  81. Los, G.V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    CAS  PubMed  Google Scholar 

  82. Meier, J.L., Mercer, A.C., Rivera, H. Jr. & Burkart, M.D. Synthesis and evaluation of bioorthogonal pantetheine analogues for in vivo protein modification. J. Am. Chem. Soc. 128, 12174–12184 (2006).

    CAS  PubMed  Google Scholar 

  83. Carrico, I.S., Carlson, B.L. & Bertozzi, C.R. Introducing genetically encoded aldehydes into proteins. Nat. Chem. Biol. 3, 321–322 (2007).

    CAS  PubMed  Google Scholar 

  84. Wu, P. et al. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc. Natl. Acad. Sci. USA 106, 3000–3005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Oh, I.K., Mok, H. & Park, T.G. Folate immobilized and PEGylated adenovirus for retargeting to tumor cells. Bioconjug. Chem. 17, 721–727 (2006).

    CAS  PubMed  Google Scholar 

  86. Raja, K.S. et al. Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules 4, 472–476 (2003).

    CAS  PubMed  Google Scholar 

  87. Kovacs, E.W. et al. Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug. Chem. 18, 1140–1147 (2007).

    CAS  PubMed  Google Scholar 

  88. Tong, G.J., Hsiao, S.C., Carrico, Z.M. & Francis, M.B. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J. Am. Chem. Soc. 131, 11174–11178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Stephanopoulos, N., Carrico, Z.M. & Francis, M.B. Nanoscale integration of sensitizing chromophores and porphyrins with bacteriophage MS2. Angew. Chem. Int. Ed. Engl. 48, 9498–9502 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Garimella, P.D., Datta, A., Romanini, D.W., Raymond, K.N. & Francis, M.B. Multivalent, high-relaxivity MRI contrast agents using rigid cysteine-reactive gadolinium complexes. J. Am. Chem. Soc. 133, 14704–14709 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, W., Hsiao, S., Carrico, Z. & Francis, M. Genome-free viral capsids as multivalent carriers for taxol delivery. Angew. Chem. Int. Ed. Engl. 48, 9493–9497 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hooker, J.M., Esser-Kahn, A.P. & Francis, M.B. Modification of aniline containing proteins using an oxidative coupling strategy. J. Am. Chem. Soc. 128, 15558–15559 (2006).

    CAS  PubMed  Google Scholar 

  93. Mastico, R.A., Talbot, S.J. & Stockley, P.G. Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J. Gen. Virol. 74, 541–548 (1993).

    CAS  PubMed  Google Scholar 

  94. Guo, J., Melançon, C.E., Lee, H.S., Groff, D. & Schultz, P.G. Evolution of amber suppressor tRNAs for efficient bacterial production of unnatural amino acid-containing proteins. Angew. Chem. Int. Ed. Engl. 48, 9148–9151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Shangguan, D. et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 103, 11838–11843 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Suci, P.A., Varpness, Z., Gillitzer, E., Douglas, T. & Young, M. Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer. Langmuir 23, 12280–12286 (2007).

    CAS  PubMed  Google Scholar 

  97. Dedeo, M.T., Duderstadt, K.E., Berger, J.M. & Francis, M.B. Nanoscale protein assemblies from a circular permutant of the tobacco mosaic virus. Nano Lett. 10, 181–186 (2010).

    CAS  PubMed  Google Scholar 

  98. Destito, G., Yeh, R., Rae, C.S., Finn, M. & Manchester, M. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem. Biol. 14, 1152–1162 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Nam, Y.S. et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat. Nanotechnol. 5, 340–344 (2010).

    CAS  PubMed  Google Scholar 

  100. Esser-Kahn, A.P., Iavarone, A.T. & Francis, M.B. Metallothionein-cross-linked hydrogels for the selective removal of heavy metals from water. J. Am. Chem. Soc. 130, 15820–15822 (2008).

    CAS  PubMed  Google Scholar 

  101. Green, D.E., Morris, T.W., Green, J., Cronan, J.E. & Guest, J.R. Purification and properties of the lipoate protein ligase of Escherichia coli. Biochem. J. 309, 853–862 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102, 7583–7588 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

Our efforts to develop new bioconjugation strategies, capsid-based delivery agents, and proteinpolymer hybrid materials have been generously supported by the US National Institutes of Health (GM072700), the Department of Defense Breast Cancer Research Program (BC061995) and the US National Science Foundation (0449772). While writing this manuscript, N.S. was supported by the Director of the Office of Science, Materials Sciences and Engineering Division, US Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B Francis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephanopoulos, N., Francis, M. Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7, 876–884 (2011). https://doi.org/10.1038/nchembio.720

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing