Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contributions of counter-charge in a potassium channel voltage-sensor domain

Abstract

Voltage-sensor domains couple membrane potential to conformational changes in voltage-gated ion channels and phosphatases. Highly coevolved acidic and aromatic side chains assist the transfer of cationic side chains across the transmembrane electric field during voltage sensing. We investigated the functional contribution of negative electrostatic potentials from these residues to channel gating and voltage sensing with unnatural amino acid mutagenesis, electrophysiology, voltage-clamp fluorometry and ab initio calculations. The data show that neutralization of two conserved acidic side chains in transmembrane segments S2 and S3, namely Glu293 and Asp316 in Shaker potassium channels, has little functional effect on conductance-voltage relationships, although Glu293 appears to catalyze S4 movement. Our results suggest that neither Glu293 nor Asp316 engages in electrostatic state–dependent charge-charge interactions with S4, likely because they occupy, and possibly help create, a water-filled vestibule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of transmembrane segments 2–4 and sequence alignment.
Figure 2: Contributions of Asp316 and Glu293.
Figure 3: Glu293 and Asp316 do not contribute to a network of electrostatic charge-charge interactions.
Figure 4: Glu283 is likely to form a state-dependent electrostatic charge-charge interaction with S4 charges.
Figure 5: A cation-pi interaction in the potassium channel voltage sensor.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hille, B. Ion Channels of Excitable Membranes 3rd edn. (Sinauer, 2001).

  2. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Ramsey, I.S., Moran, M.M., Chong, J.A. & Clapham, D.E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahern, C.A. & Horn, R. Focused electric field across the voltage sensor of potassium channels. Neuron 48, 25–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Aggarwal, S.K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Seoh, S.A., Sigg, D., Papazian, D.M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, N., George, A.L. Jr. & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996).

    Article  PubMed  Google Scholar 

  8. Ahern, C.A. & Horn, R. Specificity of charge-carrying residues in the voltage sensor of potassium channels. J. Gen. Physiol. 123, 205–216 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chanda, B. & Bezanilla, F. A common pathway for charge transport through voltage-sensing domains. Neuron 57, 345–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Krepkiy, D. et al. Structure and hydration of membranes embedded with voltage-sensing domains. Nature 462, 473–479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Milescu, M. et al. Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat. Struct. Mol. Biol. 16, 1080–1085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmidt, D., Jiang, Q.X. & MacKinnon, R. Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444, 775–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, Y., Ramu, Y. & Lu, Z. Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature 451, 826–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Armstrong, C.M. Sodium channels and gating currents. Physiol. Rev. 61, 644–683 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Bosmans, F., Martin-Eauclaire, M.F. & Swartz, K.J. Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456, 202–208 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Catterall, W.A. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915–928 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li-Smerin, Y., Hackos, D.H. & Swartz, K.J. Alpha-helical structural elements within the voltage-sensing domains of a K+ channel. J. Gen. Physiol. 115, 33–50 (1999).

    Article  Google Scholar 

  18. Wu, D. et al. State-dependent electrostatic interactions of S4 arginines with E1 in S2 during Kv7.1 activation. J. Gen. Physiol. 135, 595–606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Long, S.B., Tao, X., Campbell, E.B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Tao, X., Lee, A., Limapichat, W., Dougherty, D.A. & MacKinnon, R. A gating charge transfer center in voltage sensors. Science 328, 67–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Papazian, D.M. et al. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14, 1293–1301 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Tiwari-Woodruff, S.K., Schulteis, C.T., Mock, A.F. & Papazian, D.M. Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys. J. 72, 1489–1500 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, L. et al. Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain. Proc. Natl. Acad. Sci. USA 104, 8263–8268 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Planells-Cases, R., Ferrer-Montiel, A.V., Patten, C.D. & Montal, M. Mutation of conserved negatively charged residues in the S2 and S3 transmembrane segments of a mammalian K+ channel selectively modulates channel gating. Proc. Natl. Acad. Sci. USA 92, 9422–9426 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. DeCaen, P.G., Yarov-Yarovoy, V., Sharp, E.M., Scheuer, T. & Catterall, W.A. Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proc. Natl. Acad. Sci. USA 106, 22498–22503 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. DeCaen, P.G., Yarov-Yarovoy, V., Zhao, Y., Scheuer, T. & Catterall, W.A. Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc. Natl. Acad. Sci. USA 105, 15142–15147 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Silverman, W.R., Roux, B. & Papazian, D.M. Structural basis of two-stage voltage-dependent activation in K+ channels. Proc. Natl. Acad. Sci. USA 100, 2935–2940 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Nowak, M.W. et al. In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system. Methods Enzymol. 293, 504–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Cashin, A.L., Torrice, M.M., McMenimen, K.A., Lester, H.A. & Dougherty, D.A. Chemical-scale studies on the role of a conserved aspartate in preorganizing the agonist binding site of the nicotinic acetylcholine receptor. Biochemistry 46, 630–639 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelly, T.R. & Kim, M.H. Relative binding affinity of carboxylate and its isosteres: nitro, phosphate, phosphonate, sulfonate and σ-lactone. J. Am. Chem. Soc. 116, 7072–7080 (1994).

    Article  CAS  Google Scholar 

  31. Perozo, E., MacKinnon, R., Bezanilla, F. & Stefani, E. Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron 11, 353–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Cha, A. & Bezanilla, F. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19, 1127–1140 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Mannuzzu, L.M., Moronne, M.M. & Isacoff, E.Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271, 213–216 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Chakrapani, S., Cuello, L.G., Cortes, D.M. & Perozo, E. Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. Structure 16, 398–409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, X., Wang, Q., Ni, F. & Ma, J. Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc. Natl. Acad. Sci. USA 107, 11352–11357 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Starace, D.M. & Bezanilla, F. Histidine scanning mutagenesis of basic residues of the S4 segment of the Shaker K+ channel. J. Gen. Physiol. 117, 469–490 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Starace, D.M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Chakrapani, S., Sompornpisut, P., Intharathep, P., Roux, B. & Perozo, E. The activated state of a sodium channel voltage sensor in a membrane environment. Proc. Natl. Acad. Sci. USA 107, 5435–5440 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Gallivan, J.P. & Dougherty, D.A. A computational study of cation-π interactions vs salt bridges in aqueous media: implications for protein engineering. J. Am. Chem. Soc. 122, 870–874 (2000).

    Article  CAS  Google Scholar 

  40. Gallivan, J.P. & Dougherty, D.A. Cation-pi interactions in structural biology. Proc. Natl. Acad. Sci. USA 96, 9459–9464 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Yifrach, O. & MacKinnon, R. Energetics of pore opening in a voltage-gated K+ channel. Cell 111, 231–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Zhong, W. et al. From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. Proc. Natl. Acad. Sci. USA 95, 12088–12093 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Sokolov, S., Scheuer, T. & Catterall, W.A. Gating pore current in an inherited ion channelopathy. Nature 446, 76–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Tombola, F., Pathak, M.M., Gorostiza, P. & Isacoff, E.Y. The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature 445, 546–549 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Jogini, V. & Roux, B. Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. Biophys. J. 93, 3070–3082 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sato, Y., Sakaguchi, M., Goshima, S., Nakamura, T. & Uozumi, N. Integration of Shaker-type K+ channel, KAT1, into the endoplasmic reticulum membrane: synergistic insertion of voltage-sensing segments, S3-S4, and independent insertion of pore-forming segments, S5-P-S6. Proc. Natl. Acad. Sci. USA 99, 60–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Lacroix, J.J., Labro, A.J. & Bezanilla, F. Properties of deactivation gating currents in shaker channels. Biophys. J. 100, L28–L30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Villalba-Galea, C.A., Sandtner, W., Starace, D.M. & Bezanilla, F. S4-based voltage sensors have three major conformations. Proc. Natl. Acad. Sci. USA 105, 17600–17607 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Pless, S.A. et al. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue. J. Neurosci. 28, 10937–10942 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Horn, H. Kurata and S. Goodchild for helpful discussions. This work was supported by the Canadian Institutes of Health Research (56858), the Heart and Stroke Foundation of Canada, the Michael Smith Foundation for Health Research (to C.A.A.) and a postdoctoral fellowship from the Heart and Stroke Foundation of Canada (to S.A.P.).

Author information

Authors and Affiliations

Authors

Contributions

S.A.P. performed and analyzed the experiments, A.P.N. provided technical support and J.D.G. performed the chemical synthesis of all reagents. S.A.P. and C.A.A. designed the research and prepared the manuscript.

Corresponding author

Correspondence to Christopher A Ahern.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 1308 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pless, S., Galpin, J., Niciforovic, A. et al. Contributions of counter-charge in a potassium channel voltage-sensor domain. Nat Chem Biol 7, 617–623 (2011). https://doi.org/10.1038/nchembio.622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.622

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing