Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Sensing cellular stress through STIM proteins

In response to decreasing Ca2+ levels in the endoplasmic reticulum, STIM proteins couple with Orai channels in the plasma membrane, leading to Ca2+ influx into the cell. In addition to Ca2+-related endoplasmic reticulum stress, STIM proteins are emerging as general stress sensors that react to multiple stress signals to orchestrate Ca2+ signaling and homeostasis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STIM activation.
Figure 2: Multiple stress sensing by STIM1.
Figure 3: Multiple targets for STIM1.

References

  1. Deng, X., Wang, Y., Zhou, Y., Soboloff, J. & Gill, D.L. J. Biol. Chem. 284, 22501–22505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hogan, P.G., Lewis, R.S. & Rao, A. Annu. Rev. Immunol. 28, 491–533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mancarella, S., Wang, Y. & Gill, D.L. Curr. Biol. 19, R950–R952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hawkins, B.J. et al. J. Cell Biol. 190, 391–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiao, B., Coste, B., Mathur, J. & Patapoutian, A. Nat. Chem. Biol. 7, 351–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coe, H. & Michalak, M. Gen. Physiol. Biophys. 28, F96–F103 (2009).

    PubMed  Google Scholar 

  7. Ron, D. & Walter, P. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Brandman, O., Liou, J., Park, W.S. & Meyer, T. Cell 131, 1327–1339 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, Y. et al. J. Biol. Chem. 284, 19164–19168 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, Y., Deng, X. & Gill, D.L. Sci. Signal. 3, pe42 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Di Capite, J., Ng, S.W. & Parekh, A.B. Curr. Biol. 19, 853–858 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Stathopulos, P.B., Zheng, L., Li, G.Y., Plevin, M.J. & Ikura, M. Cell 135, 110–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Liou, J. et al. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park, C.Y. et al. Cell 136, 876–890 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dröge, W. Physiol. Rev. 82, 47–95 (2002).

    Article  PubMed  Google Scholar 

  16. Madesh, M. et al. J. Cell Biol. 170, 1079–1090 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dalle-Donne, I., Rossi, R., Colombo, G., Giustarini, D. & Milzani, A. Trends Biochem. Sci. 34, 85–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Cárdenas, C. et al. Cell 142, 270–283 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Roberts-Thomson, S.J., Peters, A.A., Grice, D.M. & Monteith, G.R. Pharmacol. Ther. 127, 121–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Stathopulos, P.B., Li, G.Y., Plevin, M.J., Ames, J.B. & Ikura, M. J. Biol. Chem. 281, 35833–35862 (2006).

    Google Scholar 

  21. Lefkimmiatis, K. et al. Nat. Cell Biol. 11, 433–442 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Yuan, J.P. et al. Channels (Austin) 3, 221-225 (2009).

  23. Cheng, K.T., Liu, X., Ong, H.L., Swaim, W. & Ambudkar, I.S. PLoS Biol. 9, e1001025 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan, J.P., Zeng, W., Huang, G.N., Worley, P.F. & Muallem, S. Nat. Cell Biol. 9, 636–645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, X. et al. Proc. Natl. Acad. Sci. USA 104, 17542–17547 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DeHaven, W. et al. J. Physiol. (Lond.) 587, 2275–2298 (2009).

    Article  CAS  Google Scholar 

  27. Wang, Y. et al. Science 330, 105–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park, C.Y., Shcheglovitov, A. & Dolmetsch, R. Science 330, 101–105 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald L Gill.

Ethics declarations

Competing interests

The research performed by D.L.G. for this manuscript was partly supported by Novartis Institutes for Biomedical Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soboloff, J., Madesh, M. & Gill, D. Sensing cellular stress through STIM proteins. Nat Chem Biol 7, 488–492 (2011). https://doi.org/10.1038/nchembio.619

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing