Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for RNA trimming by RNase T in stable RNA 3′-end maturation

Abstract

RNA maturation relies on various exonucleases to remove nucleotides successively from the 5′ or 3′ end of nucleic acids. However, little is known regarding the molecular basis for substrate and cleavage preference of exonucleases. Our biochemical and structural analyses on RNase T–DNA complexes show that the RNase T dimer has an ideal architecture for binding a duplex with a short 3′ overhang to produce a digestion product of a duplex with a 2-nucleotide (nt) or 1-nt 3′ overhang, depending on the composition of the last base pair in the duplex. A 'C-filter' in RNase T screens out the nucleic acids with 3′-terminal cytosines for hydrolysis by inducing a disruptive conformational change at the active site. Our results reveal the general principles and the working mechanism for the final trimming step made by RNase T in the maturation of stable RNA and pave the way for the understanding of other DEDD family exonucleases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crystal structure of the preferred RNase T–DNA complex.
Figure 2: The crystal structure of the nonpreferred RNase T–DNA complexes.
Figure 3: A C-filter in RNase T deselects DNA with a 3′-terminal C for cleavage.
Figure 4: Crystal structure of RNase T in complex with a duplex DNA with a 2-nt 3′ overhang.
Figure 5: RNase T cleaves a 3′ overhang duplex to produce a duplex with a 1- or 2-nt 3′ overhang.
Figure 6: General principles of the 3′-terminal final trimming made by RNase T in RNA maturation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Zuo, Y. & Deutscher, M.P. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res. 29, 1017–1026 (2001).

    Article  CAS  Google Scholar 

  2. Steitz, T.A. & Steitz, J.A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90, 6498–6502 (1993).

    Article  CAS  Google Scholar 

  3. Hamdan, S., Carr, P.D., Brown, S.E., Ollis, D.L. & Dixon, N.E. Structural basis for proofreading during replication of the Escherichia coli chromosome. Structure 10, 535–546 (2002).

    Article  CAS  Google Scholar 

  4. Briggs, M.W., Burkard, K.T. & Butler, J.S. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J. Biol. Chem. 273, 13255–13263 (1998).

    Article  CAS  Google Scholar 

  5. Hsiao, Y.Y. et al. Crystal structure of CRN-4: implications for domain function in apoptotic DNA degradation. Mol. Cell. Biol. 29, 448–457 (2009).

    Article  CAS  Google Scholar 

  6. Wu, M. et al. Structural insight into poly(A) binding and catalytic mechanism of human PARN. EMBO J. 24, 4082–4093 (2005).

    Article  CAS  Google Scholar 

  7. Kavanagh, D. et al. New roles for the major human 3′-5′ exonuclease TREX1 in human disease. Cell Cycle 7, 1718–1725 (2008).

    Article  CAS  Google Scholar 

  8. Crow, Y.J. & Rehwinkel, J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum. Mol. Genet. 18, R130–R136 (2009).

    Article  CAS  Google Scholar 

  9. Deutscher, M.P., Marlor, C.W. & Zaniewski, R. Ribonuclease T: new exoribonuclease possibly involved in end-turnover of tRNA. Proc. Natl. Acad. Sci. USA 81, 4290–4293 (1984).

    Article  CAS  Google Scholar 

  10. Li, Z. & Deutscher, M.P. The tRNA processing enzyme RNase T is essential for maturation of 5S RNA. Proc. Natl. Acad. Sci. USA 92, 6883–6886 (1995).

    Article  CAS  Google Scholar 

  11. Li, Z., Pandit, S. & Deutscher, M.P. 3′ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc. Natl. Acad. Sci. USA 95, 2856–2861 (1998).

    Article  CAS  Google Scholar 

  12. Li, Z., Pandit, S. & Deutscher, M.P. Maturation of 23S ribosomal RNA requires the exoribonuclease RNase T. RNA 5, 139–146 (1999).

    Article  CAS  Google Scholar 

  13. Li, Z. & Deutscher, M.P. Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell 86, 503–512 (1996).

    Article  CAS  Google Scholar 

  14. Kelly, K.O. & Deutscher, M.P. The presence of only one of five exoribonucleases is sufficient to support the growth of Escherichia coli. J. Bacteriol. 174, 6682–6684 (1992).

    Article  CAS  Google Scholar 

  15. Viswanathan, M., Lanjuin, A. & Lovett, S.T. Identification of RNase T as a high-copy suppressor of the UV sensitivity associated with single-strand DNA exonuclease deficiency in Escherichia coli. Genetics 151, 929–934 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Misra, T.K. & Apirion, D. RNase E, an RNA processing enzyme from Escherichia coli. J. Biol. Chem. 254, 11154–11159 (1979).

    CAS  PubMed  Google Scholar 

  17. Allas, U., Liiv, A. & Remme, J. Functional interaction between RNase III and the Escherichia coli ribosome. BMC Mol. Biol. 4, 8 (2003).

    Article  Google Scholar 

  18. Li, Z. & Deutscher, M.P. RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 8, 97–109 (2002).

    Article  CAS  Google Scholar 

  19. Li, Z. & Deutscher, M.P. The role of individual exoribonucleases in processing at the 3′ end of Escherichia coli tRNA precursors. J. Biol. Chem. 269, 6064–6071 (1994).

    CAS  PubMed  Google Scholar 

  20. Zuo, Y. & Deutscher, M.P. Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization. J. Biol. Chem. 277, 50155–50159 (2002).

    Article  CAS  Google Scholar 

  21. Zuo, Y. & Deutscher, M.P. Mechanism of action of RNase T. II. A structural and functional model of the enzyme. J. Biol. Chem. 277, 50160–50164 (2002).

    Article  CAS  Google Scholar 

  22. Zuo, Y. et al. Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover. Structure 15, 417–428 (2007).

    Article  CAS  Google Scholar 

  23. Zuo, Y. & Deutscher, M.P. The DNase activity of RNase T and its application to DNA cloning. Nucleic Acids Res. 27, 4077–4082 (1999).

    Article  CAS  Google Scholar 

  24. Viswanathan, M., Dower, K.W. & Lovett, S.T. Identification of a potent DNase activity associated with RNase T of Escherichia coli. J. Biol. Chem. 273, 35126–35131 (1998).

    Article  CAS  Google Scholar 

  25. Zuo, Y. & Deutscher, M.P. The physiological role of RNase T can be explained by its unusual substrate specificity. J. Biol. Chem. 277, 29654–29661 (2002).

    Article  CAS  Google Scholar 

  26. Zuo, Y., Wang, Y. & Malhotra, A. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing. Structure 13, 973–984 (2005).

    Article  CAS  Google Scholar 

  27. Chin, K.H., Yang, C.Y., Chou, C.C., Wang, A.H. & Chou, S.H. The crystal structure of XC847 from Xanthomonas campestris: a 3′-5′ oligoribonuclease of DnaQ fold family with a novel opposingly shifted helix. Proteins 65, 1036–1040 (2006).

    Article  CAS  Google Scholar 

  28. de Silva, U. et al. The crystal structure of TREX1 explains the 3′ nucleotide specificity and reveals a polyproline II helix for protein partnering. J. Biol. Chem. 282, 10537–10543 (2007).

    Article  CAS  Google Scholar 

  29. Jones, S., Daley, D.T., Luscombe, N.M., Berman, H.M. & Thornton, J.M. Protein-RNA interactions: a structural analysis. Nucleic Acids Res. 29, 943–954 (2001).

    Article  CAS  Google Scholar 

  30. Luscombe, N.M., Laskowski, R.A. & Thornton, J.M. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. 29, 2860–2874 (2001).

    Article  CAS  Google Scholar 

  31. Ellis, J.J., Broom, M. & Jones, S. Protein–RNA Interactions: Structural analysis and functional classes. Proteins. 66, 903–911 (2007).

    Article  CAS  Google Scholar 

  32. Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D. & Zakrzewska, K. Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res. 37, 5917–5929 (2009).

    Article  CAS  Google Scholar 

  33. Cormack, R.S. & Mackie, G.A. Structural requirements for the processing of Escherichia coli 5S ribosomal RNA by RNase E in vitro. J. Mol. Biol. 228, 1078–1090 (1992).

    Article  CAS  Google Scholar 

  34. Ehretsmann, C.P., Carpousis, A.J. & Krisch, H.M. Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev. 6, 149–159 (1992).

    Article  CAS  Google Scholar 

  35. Deutscher, M.P. Ribonucleases, tRNA nucleotidyltransferase, and the 3′ processing of tRNA. Prog. Nucleic Acid Res. Mol. Biol. 39, 209–240 (1990).

    Article  CAS  Google Scholar 

  36. Dupasquier, M., Kim, S., Halkidis, K., Gamper, H. & Hou, Y.M. tRNA integrity is a prerequisite for rapid CCA addition: implication for quality control. J. Mol. Biol. 379, 579–588 (2008).

    Article  CAS  Google Scholar 

  37. Hartmann, R.K., Gossringer, M., Spath, B., Fischer, S. & Marchfelder, A. The making of tRNAs and more—RNase P and tRNase Z. Prog. Mol. Biol. Transl. Sci. 85, 319–368 (2009).

    Article  CAS  Google Scholar 

  38. Guerrier-Takada, C. & Altman, S. Catalytic activity of an RNA molecule prepared by transcription in vitro. Science 223, 285–286 (1984).

    Article  CAS  Google Scholar 

  39. Guerrier-Takada, C. & Altman, S. M1 RNA with large terminal deletions retains its catalytic activity. Cell 45, 177–183 (1986).

    Article  CAS  Google Scholar 

  40. Lehtinen, D.A., Harvey, S., Mulcahy, M.J., Hollis, T. & Perrino, F.W. The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease. J. Biol. Chem. 283, 31649–31656 (2008).

    Article  CAS  Google Scholar 

  41. Padmanabha, K.P. & Deutscher, M.P. RNase T affects Escherichia coli growth and recovery from metabolic stress. J. Bacteriol. 173, 1376–1381 (1991).

    Article  CAS  Google Scholar 

  42. Perry, J.J.P. et al. WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat. Struct. Mol. Biol. 13, 414–422 (2006).

    Article  CAS  Google Scholar 

  43. Yang, Y.G., Lindahl, T. & Barnes, D.E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007).

    Article  CAS  Google Scholar 

  44. Lee-Kirsch, M.A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    Article  CAS  Google Scholar 

  45. Riggs, A.D., Bourgeois, S., Newby, R.F. & Cohn, M. DNA binding of the lac repressor. J. Mol. Biol. 34, 365–368 (1968).

    Article  CAS  Google Scholar 

  46. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006–2008 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from Academia Sinica and the National Science Council, Taiwan. Portions of this research were carried out at the National Synchrotron Radiation Research Center (BL-13B1 and BL-13C1), a national user facility supported by the National Science Council of Taiwan. The Synchrotron Radiation Protein Crystallography Facility is supported by the National Research Program for Genomic Medicine. We thank S. Lin-Chao (Academia Sinica) for providing the E. coli knockout strains used in this study.

Author information

Authors and Affiliations

Authors

Contributions

Y.-Y.H. and H.S.Y. designed experiments and analyzed data. Y.-Y.H., C.-C.Y., C.L.L., J.L.J.L. and Y.D. carried out biochemical and structural analysis.

Corresponding author

Correspondence to Hanna S Yuan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–3 (PDF 4579 kb)

Supplementary Movie 1

The crystal structure of RNase T bound to a preferred ssDNA with a 3′-end G. The ssDNA is bound at a deep narrow groove near the DEDD active site (PDB ID: 3NGY and 3NH1). Four aromatic residues make π-π stacking interactions with the two 3′-terminal bases. Two Mg2+ ions are bound at the DEDD active site in an active conformation. (MOV 8750 kb)

Supplementary Movie 2

RNase T bound to a non-preferred ssDNA with a 3′-end C induces disruptive conformational changes at the active site. The side chain of Glu73 is rotated to make H-bonds with the 3′-terminal C and the aromatic side chains of Phe29 and Phe27 are shifted to new positions to stack with the 3′-terminal C in the RNase T–DNA2 complex (PDB ID: 3NGZ). As a result, the scissile phosphate in the nonpreferred complex moves up away from the active site and only one Mg2+ ion is bound at the active site in an inactive conformation. (MOV 12732 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, YY., Yang, CC., Lin, C. et al. Structural basis for RNA trimming by RNase T in stable RNA 3′-end maturation. Nat Chem Biol 7, 236–243 (2011). https://doi.org/10.1038/nchembio.524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing