Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An aminotransferase branch point connects purine catabolism to amino acid recycling

Abstract

Although amino acids are known precursors of purines, a pathway for the direct recycling of amino acids from purines has never been described at the molecular level. We provide NMR and crystallographic evidence that the PucG protein from Bacillus subtilis catalyzes the transamination between an unstable intermediate ((S)-ureidoglycine) and the end product of purine catabolism (glyoxylate) to yield oxalurate and glycine. This activity enables soil and gut bacteria to use the animal purine waste as a source of carbon and nitrogen. The reaction catalyzed by (S)-ureidoglycine–glyoxylate aminotransferase (UGXT) illustrates a transamination sequence in which the same substrate provides both the amino group donor and, via its spontaneous decay, the amino group acceptor. Structural comparison and mutational analysis suggest a molecular rationale for the functional divergence between UGXT and peroxisomal alanine-glyoxylate aminotransferase, a fundamental enzyme for glyoxylate detoxification in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of pucG as UGXT.
Figure 2: Aminotransferase activity of UGXT.
Figure 3: UGXT structure.
Figure 4: Evolution of substrate specificity in UGXT proteins.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Tipton, P.A. Urate to allantoin, specifically (S)-allantoin. Nat. Chem. Biol. 2, 124–125 (2006).

    Article  CAS  Google Scholar 

  2. Vogels, G.D. & Van der Drift, C. Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40, 403–468 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Todd, C.D. et al. Update on ureide degradation in legumes. J. Exp. Bot. 57, 5–12 (2006).

    Article  CAS  Google Scholar 

  4. Werner, A.K., Romeis, T. & Witte, C.P. Ureide catabolism in Arabidopsis thaliana and Escherichia coli. Nat. Chem. Biol. 6, 19–21 (2010).

    Article  CAS  Google Scholar 

  5. Serventi, F. et al. Chemical basis of nitrogen recovery through the ureide pathway: formation and hydrolysis of S-ureidoglycine in plants and bacteria. ACS Chem. Biol. 5, 203–214 (2010).

    Article  CAS  Google Scholar 

  6. Gupta, S.C. & Dekker, E.E. Malyl-CoA formation in the NAD-, CoASH-, and alpha-ketoglutarate dehydrogenase-dependent oxidation of 2-keto-4-hydroxyglutarate. Possible coupled role of this reaction with 2-keto-4-hydroxyglutarate aldolase activity in a pyruvate-catalyzed cyclic oxidation of glyoxylate. J. Biol. Chem. 259, 10012–10019 (1984).

    CAS  PubMed  Google Scholar 

  7. Zhang, X. et al. Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1. J. Mol. Biol. 331, 643–652 (2003).

    Article  CAS  Google Scholar 

  8. Schultz, A.C., Nygaard, P. & Saxild, H.H. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J. Bacteriol. 183, 3293–3302 (2001).

    Article  CAS  Google Scholar 

  9. Salas, J.A., Johnstone, K. & Ellar, D.J. Role of uricase in the triggering of germination of Bacillus fastidiosus spores. Biochem. J. 229, 241–249 (1985).

    Article  CAS  Google Scholar 

  10. Nakano, M.M. & Zuber, P. Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu. Rev. Microbiol. 52, 165–190 (1998).

    Article  CAS  Google Scholar 

  11. Tam, N.K. et al. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692–2700 (2006).

    Article  CAS  Google Scholar 

  12. Bowers, P.M., Cokus, S.J., Eisenberg, D. & Yeates, T.O. Use of logic relationships to decipher protein network organization. Science 306, 2246–2249 (2004).

    Article  CAS  Google Scholar 

  13. Ramazzina, I. et al. Logical identification of an allantoinase analog (puuE) recruited from polysaccharide deacetylases. J. Biol. Chem. 283, 23295–23304 (2008).

    Article  CAS  Google Scholar 

  14. Schneider, G., Kack, H. & Lindqvist, Y. The manifold of vitamin B6 dependent enzymes. Structure 8, R1–R6 (2000).

    Article  CAS  Google Scholar 

  15. Han, Q. et al. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase. J. Biol. Chem. 281, 37175–37182 (2006).

    Article  CAS  Google Scholar 

  16. Katsura, Y. et al. Crystal structure of a putative aspartate aminotransferase belonging to subgroup IV. Proteins 55, 487–492 (2004).

    Article  Google Scholar 

  17. Rabinowitz, J.C. & Barker, H.A. Purine fermentation by Clostridium cylindrosporum. I. Tracer experiments on the fermentation of guanine. J. Biol. Chem. 218, 147–160 (1956).

    CAS  PubMed  Google Scholar 

  18. Cellini, B., Bertoldi, M., Montioli, R., Paiardini, A. & Borri Voltattorni, C. Human wild-type alanine:glyoxylate aminotransferase and its naturally occurring G82E variant: functional properties and physiological implications. Biochem. J. 408, 39–50 (2007).

    Article  CAS  Google Scholar 

  19. French, J.B. & Ealick, S.E. Biochemical and structural characterization of a ureidoglycine aminotransferase in the Klebsiella pneumoniae uric acid catabolic pathway. Biochemistry 49, 5975–5977 (2010).

    Article  CAS  Google Scholar 

  20. Potrikus, C.J. & Breznak, J.A. Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc. Natl. Acad. Sci. USA 78, 4601–4605 (1981).

    Article  CAS  Google Scholar 

  21. Singer, M.A. Do mammals, birds, reptiles and fish have similar nitrogen conserving systems? Comp. Biochem. Physiol. B 134, 543–558 (2003).

    Article  Google Scholar 

  22. Hoa, N.T. et al. Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 66, 5241–5247 (2000).

    Article  CAS  Google Scholar 

  23. Sorensen, L.B. & Levinson, D.J. Origin and extrarenal elimination of uric acid in man. Nephron 14, 7–20 (1975).

    Article  CAS  Google Scholar 

  24. Kahn, K., Serfozo, P. & Tipton, P.A. Identification of the true product of the urate oxidase reaction. J. Am. Chem. Soc. 119, 5435–5442 (1997).

    Article  CAS  Google Scholar 

  25. Gimisis, T. & Cismaş, C. Isolation, characterization, and independent synthesis of guanine oxidation products. Eur. J. Org. Chem. 2006, 1351–1378 (2006).

    Article  Google Scholar 

  26. Percudani, R. & Peracchi, A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 10, 273 (2009).

    Article  Google Scholar 

  27. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  28. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

  29. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  30. Ye, Y. & Godzik, A. FATCAT: a web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res. 32, W582–W585 (2004).

    Article  CAS  Google Scholar 

  31. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  32. Wilkins, M.R. et al. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 112, 531–552 (1999).

    CAS  PubMed  Google Scholar 

  33. Kim, K., Park, J. & Rhee, S. Structural and functional basis for (S)-allantoin formation in the ureide pathway. J. Biol. Chem. 282, 23457–23464 (2007).

    Article  CAS  Google Scholar 

  34. Schüttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Borghi, A. Nouvenne and F. Albertini for discussions, and the staff of beamline XRD1 of Elettra, Trieste, for technical assistance during data collection.

Author information

Authors and Affiliations

Authors

Contributions

I.R. and R.C. performed experiments. L.C., R.B. and G.Z. performed the crystallographic studies. R.P. and A.P. designed experiments. R.P. conceived the study and wrote the paper with contributions from A.P. and G.Z. All authors analyzed data, discussed results and approved the final manuscript.

Corresponding author

Correspondence to Riccardo Percudani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Tables 1–3 and Supplementary Figures 1–8 (PDF 1336 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramazzina, I., Costa, R., Cendron, L. et al. An aminotransferase branch point connects purine catabolism to amino acid recycling. Nat Chem Biol 6, 801–806 (2010). https://doi.org/10.1038/nchembio.445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing