Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of conformational entropy in molecular recognition by calmodulin

Abstract

The physical basis for high-affinity interactions involving proteins is complex and potentially involves a range of energetic contributions. Among these are changes in protein conformational entropy, which cannot yet be reliably computed from molecular structures. We have recently used changes in conformational dynamics as a proxy for changes in conformational entropy of calmodulin upon association with domains from regulated proteins. The apparent change in conformational entropy was linearly related to the overall binding entropy. This view warrants a more quantitative foundation. Here we calibrate an 'entropy meter' using an experimental dynamical proxy based on NMR relaxation and show that changes in the conformational entropy of calmodulin are a significant component of the energetics of binding. Furthermore, the distribution of motion at the interface between the target domain and calmodulin is surprisingly noncomplementary. These observations promote modification of our understanding of the energetics of protein-ligand interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of methyl symmetry axis generalized order parameters for the target domains bound to calcium-saturated wild-type calmodulin.
Figure 2: Dynamical character of the hydrophobic anchor in the N-terminal domain of CaM.
Figure 3: Calibration of the dynamical proxy for protein conformational entropy.
Figure 4: Decomposition of the entropy of binding of target domains to calcium-saturated calmodulin.

Similar content being viewed by others

References

  1. Wodak, S.J. & Janin, J. Structural basis of macromolecular recognition. Adv. Protein Chem. 61, 9–73 (2002).

    Article  Google Scholar 

  2. Gilson, M.K., Given, J.A., Bush, B.L. & McCammon, J.A. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys. J. 72, 1047–1069 (1997).

    Article  CAS  Google Scholar 

  3. Homans, S.W. Water, water everywhere—except where it matters? Drug Discov. Today 12, 534–539 (2007).

    Article  CAS  Google Scholar 

  4. Tanford, C. The hydrophobic effect and the organization of living matter. Science 200, 1012–1018 (1978).

    Article  CAS  Google Scholar 

  5. Sharp, K.A., Nicholls, A., Fine, R.F. & Honig, B. Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science 252, 106–109 (1991).

    Article  CAS  Google Scholar 

  6. Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    Article  CAS  Google Scholar 

  7. Steinberg, I.Z. & Scheraga, H.A. Entropy changes accompanying association reactions of proteins. J. Biol. Chem. 238, 172–181 (1963).

    CAS  PubMed  Google Scholar 

  8. Karplus, M., Ichiye, T. & Pettitt, B.M. Configurational entropy of native proteins. Biophys. J. 52, 1083–1085 (1987).

    Article  CAS  Google Scholar 

  9. Matthews, B.W. Genetic and structural analysis of the proteins stability problem. Biochemistry 26, 6885–6888 (1987).

    Article  CAS  Google Scholar 

  10. Lee, A.L., Kinnear, S.A. & Wand, A.J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat. Struct. Biol. 7, 72–77 (2000).

    Article  CAS  Google Scholar 

  11. Frederick, K.K., Marlow, M.S., Valentine, K.G. & Wand, A.J. Conformational entropy in molecular recognition by proteins. Nature 448, 325–329 (2007).

    Article  CAS  Google Scholar 

  12. Igumenova, T.I., Frederick, K.K. & Wand, A.J. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem. Rev. 106, 1672–1699 (2006).

    Article  CAS  Google Scholar 

  13. Li, Z., Raychaudhuri, S. & Wand, A.J. Insights into the local residual entropy of proteins provided by NMR relaxation. Protein Sci. 5, 2647–2650 (1996).

    Article  CAS  Google Scholar 

  14. Kahl, C.R. & Means, A.R. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr. Rev. 24, 719–736 (2003).

    Article  CAS  Google Scholar 

  15. Yap, K.L. et al. Calmodulin target database. J. Struct. Funct. Genomics 1, 8–14 (2000).

    Article  CAS  Google Scholar 

  16. Muhandiram, D.R., Yamazaki, T., Sykes, B.D. & Kay, L.E. Measurement of 2H T1 and T1ρ relaxation-times in uniformly 13C-labeled and fractionally 2H-labeled proteins in solution. J. Am. Chem. Soc. 117, 11536–11544 (1995).

    Article  CAS  Google Scholar 

  17. Marlow, M.S. & Wand, A.J. Conformational dynamics of calmodulin in complex with the calmodulin-dependent kinase kinase alpha calmodulin-binding domain. Biochemistry 45, 8732–8741 (2006).

    Article  CAS  Google Scholar 

  18. Frederick, K.K., Kranz, J.K. & Wand, A.J. Characterization of the backbone and side chain dynamics of the CaM-CaMKIp complex reveals microscopic contributions to protein conformational entropy. Biochemistry 45, 9841–9848 (2006).

    Article  CAS  Google Scholar 

  19. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  20. Frederick, K.K., Sharp, K.A., Warischalk, N. & Wand, A.J. Re-evaluation of the model-free analysis of fast internal motion in proteins using NMR relaxation. J. Phys. Chem. B 112, 12095–12103 (2008).

    Article  CAS  Google Scholar 

  21. Crivici, A. & Ikura, M. Molecular and structural basis of target recognition by calmodulin. Annu. Rev. Biophys. Biomol. Struct. 24, 85–116 (1995).

    Article  CAS  Google Scholar 

  22. Clackson, T. & Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    Article  CAS  Google Scholar 

  23. Lee, A.L., Sharp, K.A., Kranz, J.K., Song, X.J. & Wand, A.J. Temperature dependence of the internal dynamics of a calmodulin-peptide complex. Biochemistry 41, 13814–13825 (2002).

    Article  CAS  Google Scholar 

  24. Palmer, A.G.I. & Massi, F. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev. 106, 1700–1719 (2006).

    Article  CAS  Google Scholar 

  25. Kainosho, M. et al. Optimal isotope labelling for NMR protein structure determinations. Nature 440, 52–57 (2006).

    Article  CAS  Google Scholar 

  26. Aoyagi, M., Arvai, A.S., Tainer, J.A. & Getzoff, E.D. Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J. 22, 766–775 (2003).

    Article  CAS  Google Scholar 

  27. Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science 257, 1251–1255 (1992).

    Article  CAS  Google Scholar 

  28. Clapperton, J.A., Martin, S.R., Smerdon, S.J., Gamblin, S.J. & Bayley, P.M. Structure of the complex of calmodulin with the target sequence of calmodulin-dependent protein kinase I: studies of the kinase activation mechanism. Biochemistry 41, 14669–14679 (2002).

    Article  CAS  Google Scholar 

  29. Osawa, M. et al. A novel target recognition revealed by calmodulin in complex with Ca2+-calmodulin-dependent kinase kinase. Nat. Struct. Biol. 6, 819–824 (1999).

    Article  CAS  Google Scholar 

  30. D'Aquino, J.A. et al. The magnitude of the backbone conformational entropy change in protein folding. Proteins 25, 143–156 (1996).

    Article  CAS  Google Scholar 

  31. Igumenova, T.I., Lee, A.L. & Wand, A.J. Backbone and side chain dynamics of mutant calmodulin-peptide complexes. Biochemistry 44, 12627–12639 (2005).

    Article  CAS  Google Scholar 

  32. Gaboriaud, C., Bissery, V., Benchetrit, T. & Mornon, J.P. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett. 224, 149–155 (1987).

    Article  CAS  Google Scholar 

  33. Marcus, Y. Ionic volumes in solution. Biophys. Chem. 124, 200–207 (2006).

    Article  CAS  Google Scholar 

  34. Kranz, J.K., Flynn, P.F., Fuentes, E.J. & Wand, A.J. Dissection of the pathway of molecular recognition by calmodulin. Biochemistry 41, 2599–2608 (2002).

    Article  CAS  Google Scholar 

  35. Balog, E. et al. Direct determination of vibrational density of states change on ligand binding to a protein. Phys. Rev. Lett. 93, 028103 (2004).

    Article  Google Scholar 

  36. Bromberg, S. & Dill, K.A. Side-chain entropy and packing in proteins. Protein Sci. 3, 997–1009 (1994).

    Article  CAS  Google Scholar 

  37. Ehrhardt, M.R., Urbauer, J.L. & Wand, A.J. The energetics and dynamics of molecular recognition by calmodulin. Biochemistry 34, 2731–2738 (1995).

    Article  CAS  Google Scholar 

  38. Dyson, H.J. & Wright, P.E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54–60 (2002).

    Article  CAS  Google Scholar 

  39. Chatfield, D.C., Szabo, A. & Brooks, B.R. Molecular dynamics of staphylococcal nuclease: comparison of simulation with 15N and 13C NMR relaxation data. J. Am. Chem. Soc. 120, 5301–5311 (1998).

    Article  CAS  Google Scholar 

  40. Prabhu, N.V., Lee, A.L., Wand, A.J. & Sharp, K.A. Dynamics and entropy of a calmodulin-peptide complex studied by NMR and molecular dynamics. Biochemistry 42, 562–570 (2003).

    Article  CAS  Google Scholar 

  41. Showalter, S.A. & Brüschweiler, R. Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: application to the AMBER99SB force field. J. Chem. Theory Comput. 3, 961–975 (2007).

    Article  CAS  Google Scholar 

  42. Li, D.W. & Brüschweiler, R. A dictionary for protein side-chain entropies from NMR order parameters. J. Am. Chem. Soc. 131, 7226–7227 (2009).

    Article  CAS  Google Scholar 

  43. Zhang, F. & Brüschweiler, R. Contact model for the prediction of NMR N-H order parameters in globular proteins. J. Am. Chem. Soc. 124, 12654–12655 (2002).

    Article  CAS  Google Scholar 

  44. Li, D.W. & Brüschweiler, R. In silico relationship between configurational entropy and soft degrees of freedom in proteins and peptides. Phys. Rev. Lett. 102, 118108 (2009).

    Article  Google Scholar 

  45. Mobley, D.L. & Dill, K.A. Binding of small-molecular ligands to proteins: “What you see” is not always “What you get”. Structure 17, 489–498 (2009).

    Article  CAS  Google Scholar 

  46. Kranz, J.K., Lee, E.K., Nairn, A.C. & Wand, A.J. A direct test of the reductionist approach to structural studies of calmodulin activity: relevance of peptide models of target proteins. J. Biol. Chem. 277, 16351–16354 (2002).

    Article  CAS  Google Scholar 

  47. Dellwo, M.J. & Wand, A.J. Model-independent and model-dependent analysis of the global and internal dynamics of cyclosporine A. J. Am. Chem. Soc. 111, 4571–4578 (1989).

    Article  CAS  Google Scholar 

  48. Skrynnikov, N.R., Mulder, F.A.A., Hon, B., Dahlquist, F.W. & Kay, L.E. Probing slow time scale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. J. Am. Chem. Soc. 123, 4556–4566 (2001).

    Article  CAS  Google Scholar 

  49. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  50. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

Download references

Acknowledgements

We are grateful to S. Bédard, A. Seitz and J.K. Kranz of the University of Pennsylvania for preparation of isotopically labeled smMLCK(p) peptide. We thank K. Sharp for helpful discussion. Financial support was provided by the US National Institutes of Health (DK 39806). K.K.F. acknowledges financial support from the US National Institutes of Health (GM 08275). J.D. acknowledges financial support from the Wenner-Gren Foundations.

Author information

Authors and Affiliations

Authors

Contributions

A.J.W. devised and initiated the project. M.S.M., J.D., K.G.V. and K.K.F. prepared the materials and collected and analyzed the primary data. M.S.M., J.D. and A.J.W. performed the analysis. A.J.W. wrote the manuscript.

Corresponding author

Correspondence to A Joshua Wand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1–7 (PDF 1621 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marlow, M., Dogan, J., Frederick, K. et al. The role of conformational entropy in molecular recognition by calmodulin. Nat Chem Biol 6, 352–358 (2010). https://doi.org/10.1038/nchembio.347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing