Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea

Abstract

A modified base at the first (wobble) position of some tRNA anticodons is critical for deciphering the genetic code. In eukaryotes and eubacteria, AUA codons are decoded by tRNAsIle with modified bases pseudouridine (and/or inosine) and lysidine, respectively. The mechanism by which archaeal species translate AUA codons is unclear. We describe a polyamine-conjugated modified base, 2-agmatinylcytidine (agm2C or agmatidine), at the wobble position of archaeal tRNAIle that decodes AUA codons specifically. We demonstrate that archaeal cells use agmatine to synthesize agm2C of tRNAIle. We also identified a new enzyme, tRNAIle-agm2C synthetase (TiaS), that catalyzes agm2C formation in the presence of agmatine and ATP. Although agm2C is chemically similar to lysidine, TiaS constitutes a distinct class of enzyme from tRNAIle-lysidine synthetase (TilS), suggesting that the decoding systems evolved convergently across domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and determination of the chemical structure of the new modified nucleoside in archaeal tRNAIle2.
Figure 2: Agmatine is a metabolic substrate of agm2C in archaeal cells.
Figure 3: In vitro reconstitution of agm2C formation by A. fulgidus TiaS.
Figure 4: Recognition of the AUA codon by archaeal tRNAIle2 with agm2C.

Similar content being viewed by others

References

  1. Yokoyama, S. & Nishimura, S. Modified nucleosides and codon recognition. in tRNA: Structure, Biosynthesis, and Function (eds. Söll, D. & RajBhandary, U.L.) 207–224 (American Society for Microbiology, Washington, DC, 1995).

    Chapter  Google Scholar 

  2. Bjork, G. Biosynthesis and function of modified nucleosides. in tRNA: Structure, Biosynthesis, and Function (eds. Söll, D. & RajBhandary, U.L.) 165–205 (American Society for Microbiology, Washington, DC, 1995).

    Chapter  Google Scholar 

  3. Suzuki, T. Biosynthesis and function of tRNA wobble modifications. in Topics in Current Genetics 24–69 (Springer-Verlag, New York, 2005).

    Google Scholar 

  4. Crick, F.H. Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 (1966).

    Article  CAS  Google Scholar 

  5. Senger, B., Auxilien, S., Englisch, U., Cramer, F. & Fasiolo, F. The modified wobble base inosine in yeast tRNAIle is a positive determinant for aminoacylation by isoleucyl-tRNA synthetase. Biochemistry 36, 8269–8275 (1997).

    Article  CAS  Google Scholar 

  6. Muramatsu, T. et al. A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J. Biol. Chem. 263, 9261–9267 (1988).

    CAS  PubMed  Google Scholar 

  7. Muramatsu, T. et al. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336, 179–181 (1988).

    Article  CAS  Google Scholar 

  8. Soma, A. et al. An RNA-modifying enzyme that governs both the codon and amino acid specificities of isoleucine tRNA. Mol. Cell 12, 689–698 (2003).

    Article  CAS  Google Scholar 

  9. Ikeuchi, Y. et al. molecular mechanism of lysidine synthesis that determines tRNA identity and codon recognition. Mol. Cell 19, 235–246 (2005).

    Article  CAS  Google Scholar 

  10. Nakanishi, K. et al. Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase. Nature 461, 1144–1148 (2009).

    Article  CAS  Google Scholar 

  11. Suzuki, T. & Miyauchi, K. Discovery and characterization of tRNAIle lysidine synthetase (TilS). FEBS Lett. 584, 272–277 (2010).

    Article  CAS  Google Scholar 

  12. Salowe, S.P., Wiltsie, J., Hawkins, J.C. & Sonatore, L.M. The catalytic flexibility of tRNAIle-lysidine synthetase can generate alternative tRNA substrates for isoleucyl-tRNA synthetase. J. Biol. Chem. 284, 9656–9662 (2009).

    Article  CAS  Google Scholar 

  13. Edmonds, C.G. et al. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J. Bacteriol. 173, 3138–3148 (1991).

    Article  CAS  Google Scholar 

  14. Gupta, R. Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J. Biol. Chem. 259, 9461–9471 (1984).

    CAS  PubMed  Google Scholar 

  15. Kohrer, C. et al. Identification and characterization of a tRNA decoding the rare AUA codon in Haloarcula marismortui. RNA 14, 117–126 (2008).

    Article  CAS  Google Scholar 

  16. Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2008).

    Article  CAS  Google Scholar 

  17. Tatusov, R.L., Koonin, E.V. & Lipman, D.J. A genomic perspective on protein families. Science 278, 631–637 (1997).

    Article  CAS  Google Scholar 

  18. Randau, L., Pearson, M. & Söll, D. The complete set of tRNA species in Nanoarchaeum equitans. FEBS Lett. 579, 2945–2947 (2005).

    Article  CAS  Google Scholar 

  19. Elkins, J.G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl. Acad. Sci. USA 105, 8102–8107 (2008).

    Article  CAS  Google Scholar 

  20. Grosjean, H., Gaspin, C., Marck, C. & Decatur, W.A. & de Crecy-Lagard, V. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes. BMC Genomics 9, 470 (2008).

    Article  Google Scholar 

  21. Groppa, M.D. & Benavides, M.P. Polyamines and abiotic stress: recent advances. Amino Acids 34, 35–45 (2008).

    Article  CAS  Google Scholar 

  22. Terui, Y., Ohnuma, M., Hiraga, K., Kawashima, E. & Oshima, T. Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem. J. 388, 427–433 (2005).

    Article  CAS  Google Scholar 

  23. Tabor, C.W. & Tabor, H. Polyamines in microorganisms. Microbiol. Rev. 49, 81–99 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fukuda, W., Morimoto, N., Imanaka, T. & Fujiwara, S. Agmatine is essential for the cell growth of Thermococcus kodakaraensis. FEMS Microbiol. Lett. 287, 113–120 (2008).

    Article  CAS  Google Scholar 

  25. Ikeuchi, Y., Shigi, N., Kato, J., Nishimura, A. & Suzuki, T. Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol. Cell 21, 97–108 (2006).

    Article  CAS  Google Scholar 

  26. Noma, A., Kirino, Y., Ikeuchi, Y. & Suzuki, T. Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 25, 2142–2154 (2006).

    Article  CAS  Google Scholar 

  27. Suzuki, T., Ikeuchi, Y., Noma, A., Suzuki, T. & Sakaguchi, Y. Mass spectrometric identification and characterization of RNA-modifying enzymes. Methods Enzymol. 425, 211–229 (2007).

    Article  CAS  Google Scholar 

  28. Brock, T.D., Brock, K.M., Belly, R.T. & Weiss, R.L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84, 54–68 (1972).

    Article  CAS  Google Scholar 

  29. Mahapatra, A. et al. Characterization of a Methanosarcina acetivorans mutant unable to translate UAG as pyrrolysine. Mol. Microbiol. 59, 56–66 (2006).

    Article  CAS  Google Scholar 

  30. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Y. Sakaguchi, T. Saigo, K. Nishikawa, S. Ohno and Y. Nomura for technical support and many fruitful discussions. Special thanks are due to Thermo Fischer Scientific for FT-MS analysis. This work was supported by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, and Culture of Japan (to Tsutomu Suzuki, T.Y. and T.W.); by a Japan Society for the Promotion of Science Fellowship for Japanese Junior Scientists (to Y.I.); by a PRESTO program grant from Japan Science and Technology (to T.N.) and by a grant from the New Energy and Industrial Technology Development Organization (NEDO) (to Tsutomu Suzuki).

Author information

Authors and Affiliations

Authors

Contributions

Y.I. determined the chemical structure of agm2C. S.K. performed biochemical studies of agm2C and TiaS. Takeo Suzuki performed in vivo labeling of agm2C. T.N. performed expression and purification of TiaS. D.N. purified native tRNA under the supervision of T.Y. T.O. supported chemical synthesis of agm2C under the supervision of T.W. All authors discussed the results and commented on the manuscript. Tsutomu Suzuki designed and supervised all the work.

Corresponding author

Correspondence to Tsutomu Suzuki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–9 (PDF 2310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeuchi, Y., Kimura, S., Numata, T. et al. Agmatine-conjugated cytidine in a tRNA anticodon is essential for AUA decoding in archaea. Nat Chem Biol 6, 277–282 (2010). https://doi.org/10.1038/nchembio.323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.323

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology