Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

An artificial di-iron oxo-protein with phenol oxidase activity

Abstract

Here we report the de novo design and NMR structure of a four-helical bundle di-iron protein with phenol oxidase activity. The introduction of the cofactor-binding and phenol-binding sites required the incorporation of residues that were detrimental to the free energy of folding of the protein. Sufficient stability was, however, obtained by optimizing the sequence of a loop distant from the active site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of DF1 and DF3 structures.
Figure 2: Model of substrate interaction with DF3 protein.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bolon, D.N., Voigt, C.A. & Mayo, S.L. Curr. Opin. Chem. Biol. 6, 125–129 (2002).

    Article  CAS  Google Scholar 

  2. Koder, R.L. & Dutton, P.L. Dalton Trans. 3045–3051 (2006).

  3. Lu, Y., Berry, S.M. & Pfister, T.D. Chem. Rev. 101, 3047–3080 (2001).

    Article  CAS  Google Scholar 

  4. Bolon, D.N. & Mayo, S.L. Proc. Natl. Acad. Sci. USA 98, 14274–14279 (2001).

    Article  CAS  Google Scholar 

  5. Jiang, L. et al. Science 319, 1387–1391 (2008).

    Article  CAS  Google Scholar 

  6. Röthlisberger, D. et al. Nature 453, 190–195 (2008).

    Article  Google Scholar 

  7. Bryson, J.W. et al. Science 270, 935–941 (1995).

    Article  CAS  Google Scholar 

  8. DeGrado, W.F., Summa, C.M., Pavone, V., Nastri, F. & Lombardi, A. Annu. Rev. Biochem. 68, 779–819 (1999).

    Article  CAS  Google Scholar 

  9. Razkin, J., Lindgren, J., Nilsson, H. & Baltzer, L. ChemBioChem 9, 1975–1984 (2008).

    CAS  PubMed  Google Scholar 

  10. Johnsson, K., Allemann, R.K., Widmer, H. & Benner, S.A. Rere. Nature 365, 530–532 (1993).

    Article  CAS  Google Scholar 

  11. Maglio, O. et al. C. R. Chimie 10, 703–720 (2007).

    Article  CAS  Google Scholar 

  12. Lombardi, A. et al. Proc. Natl. Acad. Sci. USA 97, 6298–6305 (2000).

    Article  CAS  Google Scholar 

  13. Maglio, O., Nastri, F., Pavone, V., Lombardi, A. & DeGrado, W.F. Proc. Natl. Acad. Sci. USA 100, 3772–3777 (2003).

    Article  CAS  Google Scholar 

  14. Bell, C.B. III et al. Biochemistry 48, 59–73 (2009).

    Article  CAS  Google Scholar 

  15. Calhoun, J.R. et al. J. Am. Chem. Soc. 130, 9188–9189 (2008).

    Article  CAS  Google Scholar 

  16. Berthold, D.A., Andersson, M.E. & Nordlund, P. Biochim. Biophys. Acta 1460, 241–254 (2000).

    Article  CAS  Google Scholar 

  17. Berthold, D.A. & Stenmark, P. Annu. Rev. Plant Biol. 54, 497–517 (2003).

    Article  CAS  Google Scholar 

  18. Summa, C.M., Rosenblatt, M.M., Hong, J.K., Lear, J.D. & DeGrado, W.F. J. Mol. Biol. 321, 923–938 (2002).

    Article  CAS  Google Scholar 

  19. Kaplan, J. & DeGrado, W.F. Proc. Natl. Acad. Sci. USA 101, 11566–11570 (2004).

    Article  CAS  Google Scholar 

  20. Maglio, O. et al. J. Biol. Inorg. Chem. 10, 539–549 (2005).

    Article  CAS  Google Scholar 

  21. Lahr, S.J. et al. J. Mol. Biol. 346, 1441–1454 (2005).

    Article  CAS  Google Scholar 

  22. Vincent, J.B., Olivier-Lilley, G.L. & Averill, B.A. Chem. Rev. 90, 1447–1467 (1990).

    Article  CAS  Google Scholar 

  23. Koval, I.A., Gamez, P., Belle, C., Selmeczi, K. & Reedijk, J. Chem. Soc. Rev. 35, 814–840 (2006).

    Article  CAS  Google Scholar 

  24. Corbett, J.F. & Gamson, E.P. J. Chem. Soc. Perkin 2, 1531–1537 (1972).

  25. DeGrado, W.F. et al. Angew. Chem. Int. Ed. 42, 417–420 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Trifuoggi for metal content analysis. This work was supported by the Italian Ministry of University and Scientific Research (PRIN 2007KAWXCL), the European Commission (Marie Curie Fellowship HPMD-GH-01-00113-03 to R.T.M.R.), the US National Institutes of Health (GM54616) and the US National Science Foundation (grant from the Materials Research Science and Engineering Center to the Laboratory for Research on the Structure of Matter at the University of Pennsylvania).

Author information

Authors and Affiliations

Authors

Contributions

F.N., O.M. and A.L. designed experiments and analyzed results. R.T.M.R., M.F. and C.A. synthesized the protein and performed UV-vis and chemical denaturation studies. O.M. and M.F. determined the solution structure. F.N. and C.A. performed kinetic experiments. A.L and V.P. performed molecular modeling. W.F.D. and A.L. wrote the manuscript in consultation with the remaining authors.

Corresponding authors

Correspondence to William F DeGrado or Angela Lombardi.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faiella, M., Andreozzi, C., de Rosales, R. et al. An artificial di-iron oxo-protein with phenol oxidase activity. Nat Chem Biol 5, 882–884 (2009). https://doi.org/10.1038/nchembio.257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing