Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The molecular basis of subtype selectivity of human kinin G-protein-coupled receptors

Abstract

G-protein-coupled receptors (GPCRs) are the most important signal transducers in higher eukaryotes. Despite considerable progress, the molecular basis of subtype-specific ligand selectivity, especially for peptide receptors, remains unknown. Here, by integrating DNP-enhanced solid-state NMR spectroscopy with advanced molecular modeling and docking, the mechanism of the subtype selectivity of human bradykinin receptors for their peptide agonists has been resolved. The conserved middle segments of the bound peptides show distinct conformations that result in different presentations of their N and C termini toward their receptors. Analysis of the peptide–receptor interfaces reveals that the charged N-terminal residues of the peptides are mainly selected through electrostatic interactions, whereas the C-terminal segments are recognized via both conformations and interactions. The detailed molecular picture obtained by this approach opens a new gateway for exploring the complex conformational and chemical space of peptides and peptide analogs for designing GPCR subtype-selective biochemical tools and drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Affinities of kinin peptides for their respective human bradykinin receptors, B1R and B2R.
Figure 2: Experimental setup and exemplary spectra of B1R in complex with DAKD.
Figure 3: Backbone structures of DAKD in complex with human B1R in comparison to BK bound to human B2R.
Figure 4: Functional characterization of peptide variants and B1R mutants.
Figure 5: Structural characterization of the B1R–DAKD (green) and B2R–BK (purple) binding pocket.
Figure 6: Representation of key interactions responsible for high affinity binding of DAKD to B1R and of BK to B2R.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kobilka, B.K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta 1768, 794–807 (2007).

    CAS  PubMed  Google Scholar 

  2. Rasmussen, S.G.F. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rasmussen, S.G.F. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. White, J.F. et al. Structure of the agonist-bound neurotensin receptor. Nature 490, 508–513 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016).

    CAS  PubMed  Google Scholar 

  6. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, J.J., Horst, R., Katritch, V., Stevens, R.C. & Wüthrich, K. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berkamp, S. et al. Structure of monomeric interleukin-8 and its interactions with the N-terminal binding site-I of CXCR1 by solution NMR spectroscopy. J. Biomol. NMR 69, 111–121 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaiser, A. et al. Unwinding of the C-terminal residues of neuropeptide Y is critical for Y2 receptor binding and activation. Angew. Chem. Int. Ed. Engl. 54, 7446–7449 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lopez, J.J. et al. The structure of the neuropeptide bradykinin bound to the human G-protein coupled receptor bradykinin B2 as determined by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 47, 1668–1671 (2008).

    CAS  PubMed  Google Scholar 

  11. Luca, S. et al. The conformation of neurotensin bound to its G protein-coupled receptor. Proc. Natl. Acad. Sci. USA 100, 10706–10711 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. O'Connor, C. et al. NMR structure and dynamics of the agonist dynorphin peptide bound to the human kappa opioid receptor. Proc. Natl. Acad. Sci. USA 112, 11852–11857 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Leeb-Lundberg, L.M., Marceau, F., Müller-Esterl, W., Pettibone, D.J. & Zuraw, B.L. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 57, 27–77 (2005).

    CAS  PubMed  Google Scholar 

  14. Surgand, J.-S., Rodrigo, J., Kellenberger, E. & Rognan, D. A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 62, 509–538 (2006).

    CAS  PubMed  Google Scholar 

  15. Yin, J. et al. Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat. Struct. Mol. Biol. 23, 293–299 (2016).

    CAS  PubMed  Google Scholar 

  16. Thal, D.M. et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531, 335–340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hillmeister, P. & Persson, P.B. The Kallikrein-Kinin system. Acta Physiol. (Oxf.) 206, 215–219 (2012).

    CAS  Google Scholar 

  18. Hess, J.F., Borkowski, J.A., Young, G.S., Strader, C.D. & Ransom, R.W. Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem. Biophys. Res. Commun. 184, 260–268 (1992).

    CAS  PubMed  Google Scholar 

  19. Menke, J.G. et al. Expression cloning of a human B1 bradykinin receptor. J. Biol. Chem. 269, 21583–21586 (1994).

    CAS  PubMed  Google Scholar 

  20. Becker-Baldus, J. et al. Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy. Proc. Natl. Acad. Sci. USA 112, 9896–9901 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mak-Jurkauskas, M.L. et al. Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc. Natl. Acad. Sci. USA 105, 883–888 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maciejko, J. et al. Visualizing specific cross-protomer interactions in the homo-oligomeric membrane protein proteorhodopsin by dynamic-nuclear-polarization-enhanced solid-state NMR. J. Am. Chem. Soc. 137, 9032–9043 (2015).

    CAS  PubMed  Google Scholar 

  23. Lehnert, E. et al. Antigenic peptide recognition on the human ABC transporter TAP resolved by DNP-enhanced solid-state NMR Spectroscopy. J. Am. Chem. Soc. 138, 13967–13974 (2016).

    CAS  PubMed  Google Scholar 

  24. Kaplan, M. et al. Probing a cell-embedded megadalton protein complex by DNP-supported solid-state NMR. Nat. Methods 12, 649–652 (2015).

    CAS  PubMed  Google Scholar 

  25. Jacso, T. et al. Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew. Chem. Int. Ed. Engl. 51, 432–435 (2012).

    CAS  PubMed  Google Scholar 

  26. Frederick, K.K. et al. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell 163, 620–628 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Raveh, B., London, N., Zimmerman, L. & Schueler-Furman, O. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6, e18934 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fathy, D.B., Kyle, D.J. & Leeb-Lundberg, L.M. High-affinity binding of peptide agonists to the human B1 bradykinin receptor depends on interaction between the peptide N-terminal L-lysine and the fourth extracellular domain of the receptor. Mol. Pharmacol. 57, 171–179 (2000).

    CAS  PubMed  Google Scholar 

  29. Fathy, D.B., Mathis, S.A., Leeb, T. & Leeb-Lundberg, L.M. A single position in the third transmembrane domains of the human B1 and B2 bradykinin receptors is adjacent to and discriminates between the C-terminal residues of subtype-selective ligands. J. Biol. Chem. 273, 12210–12218 (1998).

    CAS  PubMed  Google Scholar 

  30. Ha, S.N. et al. Identification of the critical residues of bradykinin receptor B1 for interaction with the kinins guided by site-directed mutagenesis and molecular modeling. Biochemistry 45, 14355–14361 (2006).

    CAS  PubMed  Google Scholar 

  31. Jarnagin, K. et al. Mutations in the B2 bradykinin receptor reveal a different pattern of contacts for peptidic agonists and peptidic antagonists. J. Biol. Chem. 271, 28277–28286 (1996).

    CAS  PubMed  Google Scholar 

  32. Kyle, D.J. Structural features of the bradykinin receptor as determined by computer simulations, mutagenesis experiments, and conformationally constrained ligands: establishing the framework for the design of new antagonists. Braz. J. Med. Biol. Res. 27, 1757–1779 (1994).

    CAS  PubMed  Google Scholar 

  33. Gieldon, A., Lopez, J.J., Glaubitz, C. & Schwalbe, H. Theoretical study of the human bradykinin-bradykinin B2 receptor complex. ChemBioChem 9, 2487–2497 (2008).

    CAS  PubMed  Google Scholar 

  34. Regoli, D., Rizzi, A., Perron, S.I. & Gobeil, F. Jr. Classification of kinin receptors. Biol. Chem. 382, 31–35 (2001).

    CAS  PubMed  Google Scholar 

  35. Leeb-Lundberg, L.M., Kang, D.S., Lamb, M.E. & Fathy, D.B. The human B1 bradykinin receptor exhibits high ligand-independent, constitutive activity. Roles of residues in the fourth intracellular and third transmembrane domains. J. Biol. Chem. 276, 8785–8792 (2001).

    CAS  PubMed  Google Scholar 

  36. Granier, S. et al. Structure of the δ-opioid receptor bound to naltrindole. Nature 485, 400–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shihoya, W. et al. Activation mechanism of endothelin ETB receptor by endothelin-1. Nature 537, 363–368 (2016).

    CAS  PubMed  Google Scholar 

  38. Hong, M. Solid-state dipolar INADEQUATE NMR spectroscopy with a large double-quantum spectral width. J. Magn. Reson. 136, 86–91 (1999).

    CAS  PubMed  Google Scholar 

  39. Hohwy, M., Jakobsen, H.J., Eden, M., Levitt, M.H. & Nielsen, N.C. Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence. J. Chem. Phys. 108, 2686–2694 (1998).

    CAS  Google Scholar 

  40. Jaroniec, C.P., Filip, C. & Griffin, R.G. 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C,(15)N-labeled solids. J. Am. Chem. Soc. 124, 10728–10742 (2002).

    CAS  PubMed  Google Scholar 

  41. Fung, B.M., Khitrin, A.K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    CAS  PubMed  Google Scholar 

  42. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen, Y. & Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Berjanskii, M.V., Neal, S. & Wishart, D.S. PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res. 34, W63–W69 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    PubMed  Google Scholar 

  46. Doreleijers, J.F. et al. CING: an integrated residue-based structure validation program suite. J. Biomol. NMR 54, 267–283 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ozenne, V. et al. Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics 28, 1463–1470 (2012).

    CAS  PubMed  Google Scholar 

  48. Neal, S., Nip, A.M., Zhang, H. & Wishart, D.S. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J. Biomol. NMR 26, 215–240 (2003).

    CAS  PubMed  Google Scholar 

  49. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    PubMed  Google Scholar 

  50. Linge, J.P., O'Donoghue, S.I. & Nilges, M. Automated assignment of ambiguous nuclear overhauser effects with ARIA. Methods Enzymol. 339, 71–90 (2001).

    CAS  PubMed  Google Scholar 

  51. Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Konagurthu, A.S., Whisstock, J.C., Stuckey, P.J. & Lesk, A.M. MUSTANG: a multiple structural alignment algorithm. Proteins 64, 559–574 (2006).

    CAS  PubMed  Google Scholar 

  53. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  Google Scholar 

  54. Jones, D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    CAS  PubMed  Google Scholar 

  55. Viklund, H. & Elofsson, A. OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24, 1662–1668 (2008).

    CAS  PubMed  Google Scholar 

  56. Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742 (2013).

    CAS  PubMed  Google Scholar 

  57. Bellucci, F. et al. A different molecular interaction of bradykinin and the synthetic agonist FR190997 with the human B2 receptor: evidence from mutational analysis. Br. J. Pharmacol. 140, 500–506 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shen, Y. & Bax, A. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J. Biomol. NMR 48, 13–22 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Han, B., Liu, Y., Ginzinger, S.W. & Wishart, D.S. SHIFTX2: significantly improved protein chemical shift prediction. J. Biomol. NMR 50, 43–57 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nguyen, E.D., Norn, C., Frimurer, T.M. & Meiler, J. Assessment and challenges of ligand docking into comparative models of G-protein coupled receptors. PLoS One 8, e67302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank T. Mosler and M. Radloff for excellent technical assistance. The German Research Foundation has supported this work through an equipment grant (GL 307/8-1). Funding by DFG project G-NMR and by SFB 807 “Transport and communication across membranes,” the Cluster of Excellence Frankfurt Macromolecular Complexes and the Max Planck Society is acknowledged. The work was also supported by BMRZ through infrastructure support by the State of Hesse. Work in the Meiler laboratory is supported through NIH (R01 GM080403, R01 GM099842 and R01 GM073151) and NSF (CHE 1305874).

Author information

Authors and Affiliations

Authors

Contributions

C.G. and H.M. conceived the project. L.J. expressed and purified B1R and performed radioactive ligand binding assays. J. Mao designed and performed DNP-ssNMR measurements, analyzed data, determined structural models of the kinin peptides and performed the analysis of B1R homolog sequences. G.K. performed molecular modeling and computational docking studies. C.R. and T.K. carried out expression of mutants and additional binding assays. H.R.A.J., C.R. and H.S. provided and analyzed supplementary liquid-state NMR data on nonbound DAKD. J.P. assisted with receptor purification and sample preparation. J. Meiler, H.M., C.G. supervised the overall project. L.J., J. Mao, G.K. and C.G. wrote the manuscript.

Corresponding authors

Correspondence to Jiafei Mao, Hartmut Michel or Clemens Glaubitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–11, Supplementary Figures 1–20 (PDF 7426 kb)

Life Sciences Reporting Summary (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joedicke, L., Mao, J., Kuenze, G. et al. The molecular basis of subtype selectivity of human kinin G-protein-coupled receptors. Nat Chem Biol 14, 284–290 (2018). https://doi.org/10.1038/nchembio.2551

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing