Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells

Abstract

Enhancing production of the anti-inflammatory cytokine interleukin-10 (IL-10) is a promising strategy to suppress pathogenic inflammation. To identify new mechanisms regulating IL-10 production, we conducted a phenotypic screen for small molecules that enhance IL-10 secretion from activated dendritic cells. Mechanism-of-action studies using a prioritized hit from the screen, BRD6989, identified the Mediator-associated kinase CDK8, and its paralog CDK19, as negative regulators of IL-10 production during innate immune activation. The ability of BRD6989 to upregulate IL-10 is recapitulated by multiple, structurally differentiated CDK8 and CDK19 inhibitors and requires an intact cyclin C–CDK8 complex. Using a highly parallel pathway reporter assay, we identified a role for enhanced AP-1 activity in IL-10 potentiation following CDK8 and CDK19 inhibition, an effect associated with reduced phosphorylation of a negative regulatory site on c-Jun. These findings identify a function for CDK8 and CDK19 in regulating innate immune activation and suggest that these kinases may warrant consideration as therapeutic targets for inflammatory disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prioritization of BRD6989 from a phenotypic screen for small-molecule enhancers of IL-10 production.
Figure 2: CDK8 is a molecular target of BRD6989.
Figure 3: Pharmacological and genetic data support CDK8 as a negative regulator of IL-10 production.
Figure 4: Modulation of c-Jun–AP-1 links CDK8 inhibition to enhanced IL-10 production.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 170–181 (2010).

    CAS  PubMed  Google Scholar 

  2. Shouval, D.S. et al. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Adv. Immunol. 122, 177–210 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Asadullah, K., Sterry, W. & Volk, H.D. Interleukin-10 therapy--review of a new approach. Pharmacol. Rev. 55, 241–269 (2003).

    CAS  PubMed  Google Scholar 

  4. Braat, H. et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

    CAS  PubMed  Google Scholar 

  5. Galeazzi, M. et al. A phase IB clinical trial with Dekavil (F8-IL10), an immunoregulatory 'armed antibody' for the treatment of rheumatoid arthritis, used in combination wiIh methotrexate. Isr. Med. Assoc. J. 16, 666 (2014).

    CAS  PubMed  Google Scholar 

  6. Rodríguez, M. et al. Polarization of the innate immune response by prostaglandin E2: a puzzle of receptors and signals. Mol. Pharmacol. 85, 187–197 (2014).

    PubMed  Google Scholar 

  7. Martin, M., Rehani, K., Jope, R.S. & Michalek, S.M. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6, 777–784 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clark, K. et al. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proc. Natl. Acad. Sci. USA 109, 16986–16991 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sundberg, T.B. et al. Small-molecule screening identifies inhibition of salt-inducible kinases as a therapeutic strategy to enhance immunoregulatory functions of dendritic cells. Proc. Natl. Acad. Sci. USA 111, 12468–12473 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, B. et al. Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nat. Commun. 5, 3479 (2014).

    PubMed  Google Scholar 

  11. Na, Y.R. et al. The early synthesis of p35 and activation of CDK5 in LPS-stimulated macrophages suppresses interleukin-10 production. Sci. Signal. 8, ra121 (2015).

    PubMed  Google Scholar 

  12. Souto, A. & Gómez-Reino, J.J. Apremilast for the treatment of psoriatic arthritis. Expert Rev. Clin. Immunol. 11, 1281–1290 (2015).

    CAS  PubMed  Google Scholar 

  13. Gordon, J.N. et al. CC-10004 but not thalidomide or lenalidomide inhibits lamina propria mononuclear cell TNF-α and MMP-3 production in patients with inflammatory bowel disease. J. Crohns Colitis 3, 175–182 (2009).

    CAS  PubMed  Google Scholar 

  14. Xing, L., Rai, B. & Lunney, E.A. Scaffold mining of kinase hinge binders in crystal structure database. J. Comput. Aided Mol. Des. 28, 13–23 (2014).

    CAS  PubMed  Google Scholar 

  15. Allen, B.L. & Taatjes, D.J. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bancerek, J. et al. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 38, 250–262 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, J. et al. Scalable synthesis of cortistatin A and related structures. J. Am. Chem. Soc. 133, 8014–8027 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pelish, H.E. et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 526, 273–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mallinger, A. et al. Discovery of potent, selective, and orally bioavailable small-molecule modulators of the mediator complex-associated kinases CDK8 and CDK19. J. Med. Chem. 59, 1078–1101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, N. et al. Cyclin C is a haploinsufficient tumour suppressor. Nat. Cell Biol. 16, 1080–1091 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. O'Connell, D.J. et al. Simultaneous pathway activity inference and gene expression analysis using RNA sequencing. Cell Syst. 2, 323–334 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Garber, M. et al. A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol. Cell 47, 810–822 (2012).

    CAS  PubMed  Google Scholar 

  24. Witte, S., O'Shea, J.J. & Vahedi, G. Super-enhancers: Asset management in immune cell genomes. Trends Immunol. 36, 519–526 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

    CAS  PubMed  Google Scholar 

  26. Porter, D.C. et al. Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc. Natl. Acad. Sci. USA 109, 13799–13804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Poss, Z.C. et al. Identification of mediator kinase substrates in human cells using cortistatin A and quantitative phosphoproteomics. Cell Rep. 15, 436–450 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamamoto, S. et al. Mediator cyclin-dependent kinases upregulate transcription of inflammatory genes in cooperation with NF-κB and C/EBPβ on stimulation of Toll-like receptor 9. Genes Cells 22, 265–276 (2017).

    CAS  PubMed  Google Scholar 

  29. Lin, A. et al. Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell 70, 777–789 (1992).

    CAS  PubMed  Google Scholar 

  30. Huang, C.C. et al. Calcineurin-mediated dephosphorylation of c-Jun Ser-243 is required for c-Jun protein stability and cell transformation. Oncogene 27, 2422–2429 (2008).

    CAS  PubMed  Google Scholar 

  31. Taira, N. et al. DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. J. Clin. Invest. 122, 859–872 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Aikawa, Y. et al. Treatment of arthritis with a selective inhibitor of c-Fos/activator protein-1. Nat. Biotechnol. 26, 817–823 (2008).

    CAS  PubMed  Google Scholar 

  33. Lim, S. & Kaldis, P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140, 3079–3093 (2013).

    CAS  PubMed  Google Scholar 

  34. Saraiva, M. et al. Identification of a macrophage-specific chromatin signature in the IL-10 locus. J. Immunol. 175, 1041–1046 (2005).

    CAS  PubMed  Google Scholar 

  35. Donner, A.J., Ebmeier, C.C., Taatjes, D.J. & Espinosa, J.M. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 17, 194–201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schreiber, S. et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Crohn's disease IL-10 cooperative study group. Gastroenterology 119, 1461–1472 (2000).

    CAS  PubMed  Google Scholar 

  37. Marlow, G.J., van Gent, D. & Ferguson, L.R. Why interleukin-10 supplementation does not work in Crohn's disease patients. World J. Gastroenterol. 19, 3931–3941 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Itakura, E. et al. IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod. Pathol. 24, 801–809 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pyonteck, S.M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, S. et al. Expression of CD163, interleukin-10, and interferon-gamma in oral squamous cell carcinoma: mutual relationships and prognostic implications. Eur. J. Oral Sci. 122, 202–209 (2014).

    CAS  PubMed  Google Scholar 

  41. Clarke, P.A. et al. Assessing the mechanism and therapeutic potential of modulators of the human Mediator complex-associated protein kinases. eLife 5, e20722 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Yamaoka, K. Janus kinase inhibitors for rheumatoid arthritis. Curr. Opin. Chem. Biol. 32, 29–33 (2016).

    CAS  PubMed  Google Scholar 

  43. Miller, S.C. et al. Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem. Pharmacol. 79, 1272–1280 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sundberg, T.B. et al. Development of chemical probes for investigation of salt-inducible kinase function in vivo. ACS Chem. Biol. 11, 2105–2111 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wawer, M.J. et al. Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using multiplexed high-dimensional profiling. Proc. Natl. Acad. Sci. USA 111, 10911–10916 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Duan, Q. et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res. 42, W449–W460 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  50. Kolde, R., Laur, S., Adler, P. & Vilo, J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28, 573–580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Institutes of Health Grants K08DK104021 (B.K.), R01CA190509 (P.S.), U01DK062432 and P30DK043351 (R.J.X.); Crohn's and Colitis Foundation of America Grant 500229 (R.J.X.); and The Leona M. and Harry B. Helmsley Charitable Trust Grant 500203 (S.L.S. and R.J.X.). S.L.S. is an Investigator of the Howard Hughes Medical Institute. We thank P. Baran (The Scripps Research Institute) for the generous gift of Δ16-cortistatin A.

Author information

Authors and Affiliations

Authors

Contributions

L.J. designed studies, conducted experiments, analyzed results and wrote the paper. T.B.S. devised the project, developed the screen, designed studies, conducted experiments, analyzed results and wrote the paper. D.J.O. designed studies, conducted experiments and analyzed results. R.K. analyzed gene expression and multiplex reporter data. J.B. designed studies, conducted experiments and analyzed results. K.J.B. synthesized BRD0330 analogs. B.K. designed studies, conducted experiments and analyzed results. B.S.-L. designed studies, conducted experiments and analyzed results. A.F. generated CcncΔ/Δ mice. C.N.R. conducted the screen. I.J.L. designed studies and analyzed results. B.J. synthesized CCT251921. D.B.G. designed studies, conducted experiments and analyzed results. J.R.P. designed studies, conducted experiments and analyzed results. P.S. generated CcncΔ/Δ mice. A.J.P. designed studies, conducted experiments and analyzed results. S.L.S. designed studies, analyzed results and wrote the paper. N.S.G. designed studies, analyzed results and wrote the paper. A.F.S. devised the project, developed the screen, synthesized CCT251921, designed studies, analyzed results and wrote the paper. R.J.X. devised the project, developed the screen, designed studies, analyzed results and wrote the paper.

Corresponding authors

Correspondence to Nathanael S Gray, Alykhan F Shamji or Ramnik J Xavier.

Ethics declarations

Competing interests

L.J., T.B.S., B.K., J.R.P., N.S.G., A.F.S., and R.J.X. are co-inventors on a provisional patent application based on these results.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–12. (PDF 4687 kb)

Supplementary Note

Chemical Synthesis of BRD10330 analogs. (PDF 375 kb)

Supplementary Data Set 1

BRD6989 Kinase profiling data (Life Technologies). (XLSX 22 kb)

Supplementary Data Set 2

BRD6989 Kinase profiling data (DiscoverX). (XLSX 59 kb)

Supplementary Data Set 3

Results from Gene Set Enrichment Analysis. (XLSX 14 kb)

Supplementary Data Set 4

Normalized TF-seq dataset. (XLSX 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johannessen, L., Sundberg, T., O'Connell, D. et al. Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nat Chem Biol 13, 1102–1108 (2017). https://doi.org/10.1038/nchembio.2458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2458

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research