Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring

Abstract

Despite containing an α-amino acid, the versatile cofactor S-adenosylmethionine (SAM) is not a known building block for nonribosomal peptide synthetase (NRPS) assembly lines. Here we report an unusual NRPS module from colibactin biosynthesis that uses SAM for amide bond formation and subsequent cyclopropanation. Our findings showcase a new use for SAM and reveal a novel biosynthetic route to a functional group that likely mediates colibactin's genotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SAM is activated as a nonribosomal peptide synthetase (NRPS) building block.
Figure 2: ClbH-mediated SAM elongation precedes ClbI-catalyzed cyclopropanation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Thibodeaux, C.J., Chang, W.C. & Liu, H.W. Chem. Rev. 112, 1681–1709 (2012).

    Article  CAS  Google Scholar 

  2. Huang, S. Nat. Rev. Cancer 2, 469–476 (2002).

    Article  CAS  Google Scholar 

  3. Broderick, J.B., Duffus, B.R., Duschene, K.S. & Shepard, E.M. Chem. Rev. 114, 4229–4317 (2014).

    Article  CAS  Google Scholar 

  4. Walsh, C.T., O'Brien, R.V. & Khosla, C. Angew. Chem. Int. Ed. Engl. 52, 7098–7124 (2013).

    Article  CAS  Google Scholar 

  5. Fischbach, M.A. & Walsh, C.T. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  Google Scholar 

  6. Nougayrède, J.P. et al. Science 313, 848–851 (2006).

    Article  Google Scholar 

  7. Arthur, J.C. et al. Science 338, 120–123 (2012).

    Article  CAS  Google Scholar 

  8. Vizcaino, M.I., Engel, P., Trautman, E. & Crawford, J.M. J. Am. Chem. Soc. 136, 9244–9247 (2014).

    Article  CAS  Google Scholar 

  9. Brotherton, C.A., Wilson, M., Byrd, G. & Balskus, E.P. Org. Lett. 17, 1545–1548 (2015).

    Article  CAS  Google Scholar 

  10. Bian, X.Y., Plaza, A., Zhang, Y.M. & Müller, R. Chem. Sci. 6, 3154–3160 (2015).

    Article  CAS  Google Scholar 

  11. Vizcaino, M.I. & Crawford, J.M. Nat. Chem. 7, 411–417 (2015).

    Article  CAS  Google Scholar 

  12. Li, Z.R. et al. ChemBioChem 16, 1715–1719 (2015).

    Article  CAS  Google Scholar 

  13. Zha, L., Wilson, M.R., Brotherton, C.A. & Balskus, E.P. ACS Chem. Biol. 11, 1287–1295 (2016).

    Article  CAS  Google Scholar 

  14. Li, Z.R. et al. Nat. Chem. Biol. 12, 773–775 (2016).

    Article  CAS  Google Scholar 

  15. Ghosh, N., Sheldrake, H.M., Searcey, M. & Pors, K. Curr. Top. Med. Chem. 9, 1494–1524 (2009).

    Article  CAS  Google Scholar 

  16. Tanasova, M. & Sturla, S.J. Chem. Rev. 112, 3578–3610 (2012).

    Article  CAS  Google Scholar 

  17. Healy, A.R., Nikolayevskiy, H., Patel, J.R., Crawford, J.M. & Herzon, S.B. J. Am. Chem. Soc. 138, 15563–15570 (2016).

    Article  CAS  Google Scholar 

  18. Brachmann, A.O. et al. Chem. Commun. (Camb.) 51, 13138–13141 (2015).

    Article  CAS  Google Scholar 

  19. Yin, J., Lin, A.J., Golan, D.E. & Walsh, C.T. Nat. Protoc. 1, 280–285 (2006).

    Article  CAS  Google Scholar 

  20. Dorrestein, P.C. et al. Biochemistry 45, 12756–12766 (2006).

    Article  CAS  Google Scholar 

  21. Fontecave, M., Atta, M. & Mulliez, E. Trends Biochem. Sci. 29, 243–249 (2004).

    Article  CAS  Google Scholar 

  22. Calderone, C.T., Kowtoniuk, W.E., Kelleher, N.L., Walsh, C.T. & Dorrestein, P.C. Proc. Natl. Acad. Sci. USA 103, 8977–8982 (2006).

    Article  CAS  Google Scholar 

  23. Simunovic, V. & Müller, R. ChemBioChem 8, 1273–1280 (2007).

    Article  CAS  Google Scholar 

  24. Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. Chem. Biol. 6, 493–505 (1999).

    Article  CAS  Google Scholar 

  25. Sundaram, S. & Hertweck, C. Curr. Opin. Chem. Biol. 31, 82–94 (2016).

    Article  CAS  Google Scholar 

  26. Brotherton, C.A. & Balskus, E.P. J. Am. Chem. Soc. 135, 3359–3362 (2013).

    Article  CAS  Google Scholar 

  27. Wenger, C.D., Phanstiel, D.H., Lee, M.V., Bailey, D.J. & Coon, J.J. Proteomics 11, 1064–1074 (2011).

    Article  CAS  Google Scholar 

  28. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  29. Datsenko, K.A. & Wanner, B.L. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  30. Bachmann, B.O. & Ravel, J. Methods Enzymol. 458, 181–217 (2009).

    Article  CAS  Google Scholar 

  31. Sievers, F. et al. Mol. Syst. Biol. 7, 539 (2011).

    Article  Google Scholar 

  32. Weber, T. et al. Nucleic Acids Res. 43, W237–W243 (2015).

    Article  CAS  Google Scholar 

  33. Alva, V., Nam, S.Z., Soding, J. & Lupas, A.N. Nucleic Acids Res. 44, W410–W415 (2016).

    Article  CAS  Google Scholar 

  34. Conti, E., Stachelhaus, T., Marahiel, M.A. & Brick, P. EMBO J. 16, 4174–4183 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Brotherton and A. Sieg for help with cloning; J. May (Kahne lab, Harvard University, Cambridge, MA) for help with radiometric assays; M. McCallum for help with bioinformatic analyses; and P. Boudreau, C. Chittim, D. Kenny, H. Nakamura, and S. Peck for helpful discussions. L.Z., Y.J., M.R.W., and E.P.B. acknowledge financial support from National Cancer Institute (1R01CA208834-01), the Damon Runyon–Rachleff Innovation Award, and the Packard Fellowship for Science and Engineering. M.T.H. and N.L.K. were supported by Northwestern University and the US National Institutes of Health (GM 067725 and AT 009143). M.R.W. is supported by an American Cancer Society-New England Division Postdoctoral Fellowship (PF-16-122-01-CDD).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. cloned, overexpressed, and purified colibactin biosynthetic enzymes and completed all enzymatic assays and bioinformatic analyses. Y.J. generated mutants used in the study and prepared culture extracts. M.T.H. analyzed enzymatic assays by protein mass spectrometry. M.R.W. prepared and characterized synthetic standards. J.X.W. helped to develop the analysis method for small-molecule LC–MS/MS. All coauthors collected and analyzed data. L.Z., M.T.H., N.L.K., and E.P.B. prepared and revised the manuscript.

Corresponding authors

Correspondence to Neil L Kelleher or Emily P Balskus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–26 (PDF 7897 kb)

Life Sciences Reporting Summary (PDF 71 kb)

Supplementary Note

Preparation and characterization of synthetic standards 2 and 3 (PDF 1564 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, L., Jiang, Y., Henke, M. et al. Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring. Nat Chem Biol 13, 1063–1065 (2017). https://doi.org/10.1038/nchembio.2448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing