Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptidomimetic inhibitors of APC–Asef interaction block colorectal cancer migration

Abstract

The binding of adenomatous polyposis coli (APC) to its receptor Asef relieves the negative intramolecular regulation of Asef and leads to aberrant cell migration in human colorectal cancer. Because of its crucial role in metastatic dissemination, the interaction between APC and Asef is an attractive target for anti-colorectal-cancer therapy. We rationally designed a series of peptidomimetics that act as potent inhibitors of the APC interface. Crystal structures and biochemical and cellular assays showed that the peptidomimetics in the APC pocket inhibited the migration of colorectal cells by disrupting APC–Asef interaction. By using the peptidomimetic inhibitor as a chemical probe, we found that CDC42 was the downstream GTPase involved in APC-stimulated Asef activation in colorectal cancer cells. Our work demonstrates the feasibility of exploiting APC–Asef interaction to regulate the migration of colorectal cancer cells, and provides what to our knowledge is the first class of protein–protein interaction inhibitors available for the development of cancer therapeutics targeting APC–Asef signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design, competitive binding activities, and co-crystal structures of first-generation peptides complexed with APC.
Figure 2: Characterization and co-crystal structure of MAI-150 complexed with APC.
Figure 3: The binding activity and co-crystal structure of MAI-203 complexed with APC.
Figure 4: MAITs inhibit APC–Asef interaction in cells.
Figure 5: MAITs inhibit the migration and invasion of SW480 cells.
Figure 6: MAIT-203 inhibits APC–Asef-mediated CDC42 activation in SW480 cells and in vitro.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Bravo-Cordero, J.J., Hodgson, L. & Condeelis, J. Directed cell invasion and migration during metastasis. Curr. Opin. Cell Biol. 24, 277–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Eccles, S.A. & Welch, D.R. Metastasis: recent discoveries and novel treatment strategies. Lancet 369, 1742–1757 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eccles, S.A. Targeting key steps in metastatic tumour progression. Curr. Opin. Genet. Dev. 15, 77–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Eccles, S.A., Box, C. & Court, W. Cell migration/invasion assays and their application in cancer drug discovery. Biotechnol. Annu. Rev. 11, 391–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Jones, D.H. et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Mitin, N. et al. Release of autoinhibition of ASEF by APC leads to CDC42 activation and tumor suppression. Nat. Struct. Mol. Biol. 14, 814–823 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, Z. et al. Structural basis for the recognition of Asef by adenomatous polyposis coli. Cell Res. 22, 372–386 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Kawasaki, Y., Sato, R. & Akiyama, T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat. Cell Biol. 5, 211–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Akiyama, T. & Kawasaki, Y. Wnt signalling and the actin cytoskeleton. Oncogene 25, 7538–7544 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Aoki, K. & Taketo, M.M. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J. Cell Sci. 120, 3327–3335 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Schneikert, J. & Behrens, J. The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut 56, 417–425 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kawasaki, Y. et al. Asef, a link between the tumor suppressor APC and G-protein signaling. Science 289, 1194–1197 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Kawasaki, Y. et al. Identification and characterization of Asef2, a guanine-nucleotide exchange factor specific for Rac1 and Cdc42. Oncogene 26, 7620–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kawasaki, Y. et al. The adenomatous polyposis coli-associated guanine nucleotide exchange factor Asef is involved in angiogenesis. J. Biol. Chem. 285, 1199–1207 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Lo, M.C. et al. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal. Biochem. 332, 153–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Pantoliano, M.W. et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen. 6, 429–440 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Niesen, F.H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Vedadi, M. et al. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc. Natl. Acad. Sci. USA 103, 15835–15840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Futaki, S. Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv. Drug Deliv. Rev. 57, 547–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Futaki, S. et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836–5840 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Qvit, N., Rubin, S.J., Urban, T.J., Mochly-Rosen, D. & Gross, E.R. Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov. Today 22, 454–462 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Richard, J.P. et al. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Martinez Molina, D. & Nordlund, P. The cellular thermal shift assay: a novel biophysical assay for in situ drug target engagement and mechanistic biomarker studies. Annu. Rev. Pharmacol. Toxicol. 56, 141–161 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Tan, B.X. et al. Assessing the efficacy of Mdm2/Mdm4-inhibiting stapled peptides using cellular thermal shift assays. Sci. Rep. 5, 12116 (2015).

    Article  PubMed  Google Scholar 

  25. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article  PubMed  Google Scholar 

  26. Almqvist, H. et al. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. Nat. Commun. 7, 11040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morishita, E.C. et al. Crystal structures of the armadillo repeat domain of adenomatous polyposis coli and its complex with the tyrosine-rich domain of Sam68. Structure 19, 1496–1508 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Breitman, M., Zilberberg, A., Caspi, M. & Rosin-Arbesfeld, R. The armadillo repeat domain of the APC tumor suppressor protein interacts with Striatin family members. Biochim. Biophys. Acta 1783, 1792–1802 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Diemert, S. et al. Impedance measurement for real time detection of neuronal cell death. J. Neurosci. Methods 203, 69–77 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Kawasaki, Y. et al. The adenomatous polyposis coli-associated exchange factors Asef and Asef2 are required for adenoma formation in Apc(Min/+)mice. EMBO Rep. 10, 1355–1362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamann, M.J., Lubking, C.M., Luchini, D.N. & Billadeau, D.D. Asef2 functions as a Cdc42 exchange factor and is stimulated by the release of an autoinhibitory module from a concealed C-terminal activation element. Mol. Cell. Biol. 27, 1380–1393 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Montorsi, L. et al. Loss of ZFP36 expression in colorectal cancer correlates to wnt/β-catenin activity and enhances epithelial-to-mesenchymal transition through upregulation of ZEB1, SOX9 and MACC1. Oncotarget 7, 59144–59157 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Du, W.Y. et al. The loss-of-function mutations and down-regulated expression of ASB3 gene promote the growth and metastasis of colorectal cancer cells. Chin. J. Cancer 36, 11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ding, K.F. et al. Effect of SNC19/ST14 gene overexpression on invasion of colorectal cancer cells. World J. Gastroenterol. 11, 5651–5654 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sbai, O. et al. RAGE-TXNIP axis is required for S100B-promoted Schwann cell migration, fibronectin expression and cytokine secretion. J. Cell Sci. 123, 4332–4339 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. van Es, J.H., Giles, R.H. & Clevers, H.C. The many faces of the tumor suppressor gene APC. Exp. Cell Res. 264, 126–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Farrington, S.M. & Dunlop, M.G. Mosaicism and sporadic familial adenomatous polyposis. Am. J. Hum. Genet. 64, 653–658 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ripka, A.S. & Rich, D.H. Peptidomimetic design. Curr. Opin. Chem. Biol. 2, 441–452 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Pelay-Gimeno, M., Glas, A., Koch, O. & Grossmann, T.N. Structure-based design of inhibitors of protein-protein interactions: mimicking peptide binding epitopes. Angew. Chem. Int. Edn. Engl. 54, 8896–8927 (2015).

    Article  CAS  Google Scholar 

  40. Stone, T.A. & Deber, C.M. Therapeutic design of peptide modulators of protein-protein interactions in membranes. Biochim. Biophys. Acta 1859, 577–585 (2017).

    Article  CAS  Google Scholar 

  41. Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20, 122–128 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Milligan, R.A. Protein-protein interactions in the rigor actomyosin complex. Proc. Natl. Acad. Sci. USA 93, 21–26 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sakurai, K., Schubert, C. & Kahne, D. Crystallographic analysis of an 8-mer p53 peptide analogue complexed with MDM2. J. Am. Chem. Soc. 128, 11000–11001 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Johnson, D.K. & Karanicolas, J. Selectivity by small-molecule inhibitors of protein interactions can be driven by protein surface fluctuations. PLoS Comput. Biol. 11, e1004081 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kaspar, A.A. & Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today 18, 807–817 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Florén, A., Mäger, I. & Langel, U. Uptake kinetics of cell-penetrating peptides. Methods Mol. Biol. 683, 117–128 (2011).

    Article  PubMed  Google Scholar 

  47. Nikolovska-Coleska, Z. et al. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal. Biochem. 332, 261–273 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, C. et al. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency. Nat. Commun. 6, 8899 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Yu, J. et al. RhoGDI SUMOylation at Lys-138 increases its binding activity to Rho GTPase and its inhibiting cancer cell motility. J. Biol. Chem. 287, 13752–13760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao, X. et al. miR186 suppresses prostate cancer progression by targeting Twist1. Oncotarget 7, 33136–33151 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Liu, X. et al. MiRNA-296-3p-ICAM-1 axis promotes metastasis of prostate cancer by possible enhancing survival of natural killer cell-resistant circulating tumour cells. Cell Death Dis. 4, e928 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank T. Akiyama (University of Tokyo) for help with the cell migration assay and for fruitful discussions on application, S. Wang (University of Michigan) for design discussion and antibody shipping, and the Shanghai Synchrotron Radiation Facility (SSRF) for crystal diffraction. APC, Asef and full-length CDC42 were kind gifts from G. Wu (Shanghai Jiao-Tong University, Shanghai, China). This work was supported in part by the National Basic Research Program of China (973 Program) (grant 2015CB910403 to J.Z.), the National Natural Science Foundation of China (grants 81630075 to J.Y., 81322046 and 81473137 to J.Z., and 81302698 to S.L.), the Innovative Research Group of NSFC (J.Z., J.Y. and G.C.), the Shanghai Rising-Star Program (grant 13QA1402300 to J.Z.), the Shanghai Sailing Program (grant 17YF1410600 to X.Y.), the National Program for Support of Top-notch Young Professionals (grant 2015 to J.Z.), and the Program for New Century Excellent Talents in University (grant NCET-12-0355 to J.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J.Z. designed the research project. J.Z., H.J., R.D., X.Y., J.S., S.L., X.L., G.C., and J.Y. performed the biological experiments and analyzed data. Y.Z. and K.S. performed the crystallography. X.Y. carried out peptide synthesis, purification and characterization. Y.C., Y.E.C., Q.Z., G.W., and J.L. generated key protein reagents. K.S. solved the crystal structures. All authors contributed to the manuscript, with J.Z. and J.Y. assuming responsibility for the manuscript in its entirety.

Corresponding authors

Correspondence to Jianxiu Yu or Jian Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–7 and Supplementary Figures 1–34. (PDF 5512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Deng, R., Yang, X. et al. Peptidomimetic inhibitors of APC–Asef interaction block colorectal cancer migration. Nat Chem Biol 13, 994–1001 (2017). https://doi.org/10.1038/nchembio.2442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2442

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer