Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation

Abstract

Curli are functional extracellular amyloid fibers produced by uropathogenic Escherichia coli (UPEC) and other Enterobacteriaceae. Ring-fused 2-pyridones, such as FN075 and BibC6, inhibited curli biogenesis in UPEC and prevented the in vitro polymerization of the major curli subunit protein CsgA. The curlicides FN075 and BibC6 share a common chemical lineage with other ring-fused 2-pyridones termed pilicides. Pilicides inhibit the assembly of type 1 pili, which are required for pathogenesis during urinary tract infection. Notably, the curlicides retained pilicide activities and inhibited both curli-dependent and type 1–dependent biofilms. Furthermore, pretreatment of UPEC with FN075 significantly attenuated virulence in a mouse model of urinary tract infection. Curli and type 1 pili exhibited exclusive and independent roles in promoting UPEC biofilms, and curli provided a fitness advantage in vivo. Thus, the ability of FN075 to block the biogenesis of both curli and type 1 pili endows unique anti-biofilm and anti-virulence activities on these compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Curlicide inhibition of in vivo amyloid biogenesis in E. coli.
Figure 2: Curlicide inhibition of in vitro CsgA polymerization.
Figure 3: Curlicide inhibition of curli-dependent UTI89 pellicle formation.
Figure 4: Curlicide inhibition of UTI89 amyloid-dependent and type 1 pili-dependent biofilm formation on PVC.
Figure 5: FN075 attenuation of virulence in vivo.

Similar content being viewed by others

References

  1. Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R. & Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    Article  CAS  Google Scholar 

  2. Ryu, J.H. & Beuchat, L.R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: effect of exopolysaccharide and Curli production on its resistance to chlorine. Appl. Environ. Microbiol. 71, 247–254 (2005).

    Article  CAS  Google Scholar 

  3. Olsen, A., Jonsson, A. & Normark, S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338, 652–655 (1989).

    Article  CAS  Google Scholar 

  4. Chapman, M.R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002).

    Article  CAS  Google Scholar 

  5. Barnhart, M.M. & Chapman, M.R. Curli biogenesis and function. Annu. Rev. Microbiol. 60, 131–147 (2006).

    Article  CAS  Google Scholar 

  6. Cegelski, L., Smith, C.L. & Hulgren, S.J. Microbial adhesion. in Encyclopedia of Microbiology (ed. Schaechter, M.) 1–10 (Academic Press, New York, 2009).

  7. Uhlich, G.A., Cooke, P.H. & Solomon, E.B. Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl. Environ. Microbiol. 72, 2564–2572 (2006).

    Article  CAS  Google Scholar 

  8. Kikuchi, T., Mizunoe, Y., Takade, A., Naito, S. & Yoshida, S. Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol. Immunol. 49, 875–884 (2005).

    Article  CAS  Google Scholar 

  9. Zogaj, X., Bokranz, W., Nimtz, M. & Romling, U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immun. 71, 4151–4158 (2003).

    Article  CAS  Google Scholar 

  10. Parsek, M.R. & Singh, P.K. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57, 677–701 (2003).

    Article  CAS  Google Scholar 

  11. Donlan, R.M. & Costerton, J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193 (2002).

    Article  CAS  Google Scholar 

  12. Larsen, P. et al. Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 9, 3077–3090 (2007).

    Article  CAS  Google Scholar 

  13. Larsen, P., Nielsen, J.L., Otzen, D. & Nielsen, P.H. Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl. Environ. Microbiol. 74, 1517–1526 (2008).

    Article  CAS  Google Scholar 

  14. Branda, S.S., Vik, S., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20–26 (2005).

    Article  CAS  Google Scholar 

  15. Sauer, F.G., Mulvey, M.A., Schilling, J.D., Martinez, J.J. & Hultgren, S.J. Bacterial pili: molecular mechanisms of pathogenesis. Curr. Opin. Microbiol. 3, 65–72 (2000).

    Article  CAS  Google Scholar 

  16. Anderson, G.G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107 (2003).

    Article  CAS  Google Scholar 

  17. Justice, S.S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl. Acad. Sci. USA 101, 1333–1338 (2004).

    Article  CAS  Google Scholar 

  18. Wright, K.J., Seed, P.C. & Hultgren, S.J. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell. Microbiol. 9, 2230–2241 (2007).

    Article  CAS  Google Scholar 

  19. Aberg, V. & Almqvist, F. Pilicides-small molecules targeting bacterial virulence. Org. Biomol. Chem. 5, 1827–1834 (2007).

    Article  Google Scholar 

  20. Reisner, A., Haagensen, J.A., Schembri, M.A., Zechner, E.L. & Molin, S. Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol. 48, 933–946 (2003).

    Article  CAS  Google Scholar 

  21. Pratt, L.A. & Kolter, R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type 1 pili. Mol. Microbiol. 30, 285–293 (1998).

    Article  CAS  Google Scholar 

  22. Saldana, Z. et al. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ. Microbiol. 11, 992–1006 (2009).

    Article  CAS  Google Scholar 

  23. Cegelski, L., Marshall, G.R., Eldridge, G.R. & Hultgren, S.J. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6, 17–27 (2008).

    Article  CAS  Google Scholar 

  24. Pinkner, J.S. et al. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc. Natl. Acad. Sci. USA 103, 17897–17902 (2006).

    Article  CAS  Google Scholar 

  25. Emtenas, H., Alderin, L. & Almqvist, F. An enantioselective ketene-imine cycloaddition method for synthesis of substituted ring-fused 2-pyridinones. J. Org. Chem. 66, 6756–6761 (2001).

    Article  CAS  Google Scholar 

  26. Emtenas, H., Taflin, C. & Almqvist, F. Efficient microwave assisted synthesis of optically active bicyclic 2-pyridinones via delta2-thiazolines. Mol. Divers. 7, 165–169 (2003).

    Article  Google Scholar 

  27. Jones, C.H. et al. FimC is a periplasmic PapD-like chaperone that directs assembly of type 1 pili in bacteria. Proc. Natl. Acad. Sci. USA 90, 8397–8401 (1993).

    Article  CAS  Google Scholar 

  28. Hung, D.L. & Hultgren, S.J. Pilus biogenesis via the chaperone/usher pathway: an integration of structure and function. J. Struct. Biol. 124, 201–220 (1998).

    Article  CAS  Google Scholar 

  29. Aberg, V. et al. Microwave-assisted decarboxylation of bicyclic 2-pyridone scaffolds and identification of Abeta-peptide aggregation inhibitors. Org. Biomol. Chem. 3, 2817–2823 (2005).

    Article  Google Scholar 

  30. Robinson, L.S., Ashman, E.M., Hultgren, S.J. & Chapman, M.R. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol. Microbiol. 59, 870–881 (2006).

    Article  CAS  Google Scholar 

  31. Hammar, M., Bian, Z. & Normark, S. Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc. Natl. Acad. Sci. USA 93, 6562–6566 (1996).

    Article  CAS  Google Scholar 

  32. Nenninger, A.A., Robinson, L.S. & Hultgren, S.J. Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc. Natl. Acad. Sci. USA 106, 900–905 (2009).

    Article  CAS  Google Scholar 

  33. Olsen, A., Arnqvist, A., Hammar, M. & Normark, S. Environmental regulation of curli production in Escherichia coli. Infect. Agents Dis. 2, 272–274 (1993).

    CAS  PubMed  Google Scholar 

  34. Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Romling, U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 1452–1463 (2001).

    Article  CAS  Google Scholar 

  35. O'Toole, G.A. & Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449–461 (1998).

    Article  CAS  Google Scholar 

  36. Rosen, D.A. et al. Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect. Immun. 76, 3346–3356 (2008).

    Article  CAS  Google Scholar 

  37. Garofalo, C.K. et al. Escherichia coli from urine of female patients with urinary tract infections is competent for intracellular bacterial community formation. Infect. Immun. 75, 52–60 (2007).

    Article  CAS  Google Scholar 

  38. Beloin, C., Roux, A. & Ghigo, J.M. Escherichia coli biofilms. Curr. Top. Microbiol. Immunol. 322, 249–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Justice, S.S., Lauer, S.R., Hultgren, S.J. & Hunstad, D.A. Maturation of intracellular Escherichia coli communities requires SurA. Infect. Immun. 74, 4793–4800 (2006).

    Article  CAS  Google Scholar 

  40. Keith, C.T., Borisy, A.A. & Stockwell, B.R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 4, 71–78 (2005).

    Article  CAS  Google Scholar 

  41. Martinez, J.J., Mulvey, M.A., Schilling, J.D., Pinkner, J.S. & Hultgren, S.J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000).

    Article  CAS  Google Scholar 

  42. Duncan, M.J., Li, G., Shin, J.S., Carson, J.L. & Abraham, S.N. Bacterial penetration of bladder epithelium through lipid rafts. J. Biol. Chem. 279, 18944–18951 (2004).

    Article  CAS  Google Scholar 

  43. Terada, N. et al. Involvement of dynamin-2 in formation of discoid vesicles in urinary bladder umbrella cells. Cell Tissue Res. 337, 91–102 (2009).

    CAS  PubMed  Google Scholar 

  44. Dhakal, B.K. & Mulvey, M.A. Uropathogenic Escherichia coli invades host cells via an HDAC6-modulated microtubule-dependent pathway. J. Biol. Chem. 284, 446–454 (2009).

    Article  CAS  Google Scholar 

  45. Bishop, B.L. et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat. Med. 13, 625–630 (2007).

    Article  CAS  Google Scholar 

  46. Mulvey, M.A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    Article  CAS  Google Scholar 

  47. Lloyd, A.L., Henderson, T.A., Vigil, P.D. & Mobley, H.L. Genomic islands of uropathogenic Escherichia coli contribute to virulence. J. Bacteriol. 191, 3469–3481 (2009).

    Article  CAS  Google Scholar 

  48. Wright, K.J., Seed, P.C. & Hultgren, S.J. Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect. Immun. 73, 7657–7668 (2005).

    Article  CAS  Google Scholar 

  49. Hammer, N.D., Wang, X., McGuffie, B.A. & Chapman, M.R. Amyloids: friend or foe? J. Alzheimers Dis. 13, 407–419 (2008).

    Article  CAS  Google Scholar 

  50. Badtke, M.P., Hammer, N.D. & Chapman, M.R. Functional amyloids signal their arrival. Sci. Signal. 2, pe43 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the expertise of W. Beatty (Imaging Facility, Washington University School of Medicine) and of A. Olofsson (Umeå Centre for Molecular Pathogenesis, Umeå University). This study was supported in part by the Swedish Natural Science Research Council and the Knut and Alice Wallenberg Foundation. The authors acknowledge funding from the US National Institutes of Health to S.J.H. (AI02549, AI048689, AI049950 and P50 DK64540), M.R.C. (AI073847), P.C.S. (K12HD00850 and K08DK074443) and L.C. (T32A107172). L.C. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Contributions

L.C., J.S.P., N.D.H., C.K.C. and C.S.H. performed and analyzed experiments. E.C. and V.A. synthesized and characterized the molecules. L.C., J.S.P., F.A. and S.J.H. conceptualized and initiated the project. M.R.C., F.A. and S.J.H. oversaw the project and assisted in data analysis. P.C.S. prepared critical reagents. L.C., J.S.P., M.R.C., F.A., C.K.C. and S.J.H. contributed to writing the manuscript. All authors read and edited the manuscript.

Corresponding authors

Correspondence to Fredrik Almqvist, Matthew R Chapman or Scott J Hultgren.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Methods (PDF 435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cegelski, L., Pinkner, J., Hammer, N. et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5, 913–919 (2009). https://doi.org/10.1038/nchembio.242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing