Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases

Abstract

Thiolutin is a disulfide-containing antibiotic and anti-angiogenic compound produced by Streptomyces. Its biological targets are not known. We show that reduced thiolutin is a zinc chelator that inhibits the JAB1/MPN/Mov34 (JAMM) domain–containing metalloprotease Rpn11, a deubiquitinating enzyme of the 19S proteasome. Thiolutin also inhibits the JAMM metalloproteases Csn5, the deneddylase of the COP9 signalosome; AMSH, which regulates ubiquitin-dependent sorting of cell-surface receptors; and BRCC36, a K63-specific deubiquitinase of the BRCC36-containing isopeptidase complex and the BRCA1–BRCA2-containing complex. We provide evidence that other dithiolopyrrolones also function as inhibitors of JAMM metalloproteases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: THL affects RNA Pol II transcript levels.
Figure 2: THL does not directly inhibit RNA polymerases.
Figure 3: THL inhibits protein degradation by the proteasome.
Figure 4: THL is an inhibitor of Rpn11.
Figure 5: THL inhibits JAMM proteases.

Similar content being viewed by others

Accession codes

Primary accessions

BioProject

References

  1. Li, B., Wever, W.J., Walsh, C.T. & Bowers, A.A. Dithiolopyrrolones: biosynthesis, synthesis, and activity of a unique class of disulfide-containing antibiotics. Nat. Prod. Rep. 31, 905–923 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Minamiguchi, K. et al. Thiolutin, an inhibitor of HUVEC adhesion to vitronectin, reduces paxillin in HUVECs and suppresses tumor cell-induced angiogenesis. Int. J. Cancer 93, 307–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Tipper, D.J. Inhibition of yeast ribonucleic acid polymerases by thiolutin. J. Bacteriol. 116, 245–256 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jimenez, A., Tipper, D.J. & Davies, J. Mode of action of thiolutin, an inhibitor of macromolecular synthesis in Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 3, 729–738 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khachatourians, G.G. & Tipper, D.J. Inhibition of messenger ribonucleic acid synthesis in Escherichia coli by thiolutin. J. Bacteriol. 119, 795–804 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Grigull, J., Mnaimneh, S., Pootoolal, J., Robinson, M.D. & Hughes, T.R. Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Mol. Cell. Biol. 24, 5534–5547 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pelechano, V. & Pérez-Ortín, J.E. The transcriptional inhibitor thiolutin blocks mRNA degradation in yeast. Yeast 25, 85–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Sivasubramanian, N. & Jayaraman, R. Thiolutin-resistant mutants of Escherichia coli are they RNA chain initiation mutants? Mol. Gen. Genet. 145, 89–96 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Joshi, A., Verma, M. & Chakravorty, M. Thiolutin-resistant mutants of Salmonella typhimurium. Antimicrob. Agents Chemother. 22, 541–547 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roza, J., Blanco, M.G., Hardisson, C. & Salas, J.A. Self-resistance in actinomycetes producing inhibitors of RNA polymerase. J. Antibiot. (Tokyo) 39, 609–612 (1986).

    Article  CAS  Google Scholar 

  11. Dai, S. et al. Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin. J. Proteome Res. 7, 4384–4395 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jia, Y. et al. Thiolutin inhibits endothelial cell adhesion by perturbing Hsp27 interactions with components of the actin and intermediate filament cytoskeleton. Cell Stress Chaperones 15, 165–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Cope, G.A. et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Deshaies, R.J. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 12, 94 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cope, G.A. & Deshaies, R.J. Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels. BMC Biochem. 7, 1 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wei, N. & Deng, X.W. The COP9 signalosome. Annu. Rev. Cell Dev. Biol. 19, 261–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Agromayor, M. & Martin-Serrano, J. Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo. J. Biol. Chem. 281, 23083–23091 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. McCullough, J., Clague, M.J. & Urbé, S. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166, 487–492 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cooper, E.M. et al. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J. 28, 621–631 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sobhian, B. et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, B. et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194–1198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, P. et al. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol. Cell 27, 609–621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geisberg, J.V., Moqtaderi, Z., Fan, X., Ozsolak, F. & Struhl, K. Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell 156, 812–824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dani, C. et al. Extreme instability of myc mRNA in normal and transformed human cells. Proc. Natl. Acad. Sci. USA 81, 7046–7050 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cesbron, F., Oehler, M., Ha, N., Sancar, G. & Brunner, M. Transcriptional refractoriness is dependent on core promoter architecture. Nat. Commun. 6, 6753 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Malzahn, E., Ciprianidis, S., Káldi, K., Schafmeier, T. & Brunner, M. Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142, 762–772 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Dai, M.S., Jin, Y., Gallegos, J.R. & Lu, H. Balance of yin and yang: ubiquitylation-mediated regulation of p53 and c-Myc. Neoplasia 8, 630–644 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Collins, G.A., Gomez, T.A., Deshaies, R.J. & Tansey, W.P. Combined chemical and genetic approach to inhibit proteolysis by the proteasome. Yeast 27, 965–974 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Perez, C. et al. Discovery of an inhibitor of the proteasome subunit Rpn11. J. Med. Chem. 60, 1343–1361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sato, Y. et al. Structural basis for specific cleavage of Lys63-linked polyubiquitin chains. Nature 455, 358–362 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Li, J. et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat. Chem. Biol. 13, 486–493 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonnet, J., Romier, C., Tora, L. & Devys, D. Zinc-finger UBPs: regulators of deubiquitylation. Trends Biochem. Sci. 33, 369–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, W., Wang, X. & Rosenfeld, M.G. Histone H2A ubiquitination in transcriptional regulation and DNA damage repair. Int. J. Biochem. Cell Biol. 41, 12–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Belle, J.I. et al. p53 mediates loss of hematopoietic stem cell function and lymphopenia in Mysm1 deficiency. Blood 125, 2344–2348 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, X.X. et al. Control of B cell development by the histone H2A deubiquitinase MYSM1. Immunity 35, 883–896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nijnik, A. et al. The critical role of histone H2A-deubiquitinase Mysm1 in hematopoiesis and lymphocyte differentiation. Blood 119, 1370–1379 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Nandakumar, V., Chou, Y., Zang, L., Huang, X.F. & Chen, S.Y. Epigenetic control of natural killer cell maturation by histone H2A deubiquitinase, MYSM1. Proc. Natl. Acad. Sci. USA 110, E3927–E3936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D'Arcy, P., Wang, X. & Linder, S. Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol. Ther. 147, 32–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Hideshima, T. et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc. Natl. Acad. Sci. USA 102, 8567–8572 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Richardson, P.G. et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 352, 2487–2498 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Diernfellner, A.C., Schafmeier, T., Merrow, M.W. & Brunner, M. Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Dev. 19, 1968–1973 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schafmeier, T. et al. Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell 122, 235–246 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Görl, M. et al. A PEST-like element in FREQUENCY determines the length of the circadian period in Neurospora crassa. EMBO J. 20, 7074–7084 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Davidson, L., Muniz, L. & West, S. 3′ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev. 28, 342–356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vera, M. et al. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife 3, e03164 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rose, M.D., Winston, F. & Hieter, P. in Methods in Yeast Genetics—A Laboratory Course Manual. 198 (Cold Spring Harbor Laboratory Press, 1990).

  50. Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 10B, 963–972 (1999).

    Article  Google Scholar 

  51. Merkl, P. et al. Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo. Mol. Cell. Biol. 34, 3817–3827 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Schulz, S. et al. Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep. 13, 930–938 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meulmeester, E., Kunze, M., Hsiao, H.H., Urlaub, H. & Melchior, F. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 30, 610–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Worden, E.J., Padovani, C. & Martin, A. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat. Struct. Mol. Biol. 21, 220–227 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Duda, D.M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zeqiraj, E. et al. Higher-order assembly of BRCC36-KIAA0157 is required for DUB activity and biological function. Mol. Cell 59, 970–983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T.J. Simpson (University of Bristol) for thiomarinol, S. Cohen (University of California, San Diego) for Zn2+-cyclen, E. Zeqiraj (University of Leeds) for BRISC complex, D. Marzoll (Heidelberg University Biochemistry Center) for purified recombinant Flag-FRQ, A. Martin (University of California, Berkeley) for the pETDuet-1 vector expressing the Rpn11–Rpn8 dimer and M. Knop (ZMBH Heidelberg) for yeast strains. The work was supported by Sonderforschungsbereich 1036 grants to M.B. and F.M., Transregio 186 grant to M.B., Deutsche Forschungsgemeinschaft grant DI1874/1 to A.D. and US National Institutes of Health grant CA164803 to R.J.D. F.M. and M.B. are investigators of Cellnetworks. R.J.D. is an investigator of and was supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.D. and M.B. designed the research and wrote the manuscript; J.L., Y.Z. and R.J.D. designed, performed and interpreted the Rpn11, Csn5, AMSH and BRCC36 experiments. W.J.W. and A.A.B. synthesized the holothin derivatives. K.P.C. and A.E.P. designed and performed the measurements of intracellular zinc. N.S.-V. and F.M. designed and performed the USP5 and USP25 experiments; P.E.M., S.O. and H.T. designed and performed the Pol I–III in vitro transcription assays. L.L., I.A.C., A.D. and T.S. performed the Neurospora experiments. L.L. and N.H. performed the RNA-seq analysis. L.L. performed the yeast experiments. A.S. and L.L. performed the HeLa experiments. R.J.D. implicated THL as an Rpn11 inhibitor and edited the manuscript.

Corresponding authors

Correspondence to Michael Brunner or Axel Diernfellner.

Ethics declarations

Competing interests

R.J.D. is a founder, shareholder, member of the scientific advisory board and consultant of Cleave Biosciences, which is developing drugs that target protein homeostasis in cancer.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–10 (PDF 14892 kb)

Supplementary Note

Synthesis and Characterization of Chemical Compounds (PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauinger, L., Li, J., Shostak, A. et al. Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases. Nat Chem Biol 13, 709–714 (2017). https://doi.org/10.1038/nchembio.2370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2370

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research