Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet

Abstract

Toxin–antitoxin (TA) loci are prevalent in bacterial genomes. They are suggested to play a central role in dormancy and persister states. Under normal growth conditions, TA toxins are neutralized by their cognate antitoxins, and under stress conditions, toxins are freed and inhibit essential cellular processes using a variety of mechanisms. Here we characterize ataR–ataT, a novel TA system, from enterohemorrhagic Escherichia coli. We show that the toxin AtaT is a GNAT family enzyme that transfers an acetyl group from acetyl coenzyme A to the amine group of the methionyl aminoacyl moiety of initiator tRNA. AtaT specifically modifies Met-tRNAfMet, but no other aminoacyl-tRNAs, including the elongator Met-tRNAMet. We demonstrate that once acetylated, AcMet-tRNAfMet fails to interact with initiation factor-2 (IF2), resulting in disruption of the translation initiation complex. This work reveals a new mechanism of translation inhibition and confirms Met-tRNAfMet as a prime target to efficiently block cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ataT–ataR gene pair constitutes a type II TA system.
Figure 2: AtaT inhibits translation in an AcCoA-dependent manner.
Figure 3: AtaT acetylates tRNAs.
Figure 4: AtaT acetylates the amine group of the methionine charged on the initiator tRNA.
Figure 5: Translation initiation inhibition in vitro and in vivo by AtaT.
Figure 6: Proposed mode of action of AtaT.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Leplae, R. et al. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res. 39, 5513–5525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Makarova, K.S., Wolf, Y.I. & Koonin, E.V. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol. Direct 4, 19 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Pandey, D.P. & Gerdes, K. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33, 966–976 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Magnuson, R.D. Hypothetical functions of toxin-antitoxin systems. J. Bacteriol. 189, 6089–6092 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Melderen, L. Toxin-antitoxin systems: why so many, what for? Curr. Opin. Microbiol. 13, 781–785 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Maisonneuve, E. & Gerdes, K. Molecular mechanisms underlying bacterial persisters. Cell 157, 539–548 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Brauner, A., Fridman, O., Gefen, O. & Balaban, N.Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi, Y. & Inouye, M. Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Nat. Rev. Microbiol. 9, 779–790 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Hayes, F. & Van Melderen, L. Toxins-antitoxins: diversity, evolution and function. Crit. Rev. Biochem. Mol. Biol. 46, 386–408 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Mutschler, H., Gebhardt, M., Shoeman, R.L. & Meinhart, A. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9, e1001033 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernard, P. & Couturier, M. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J. Mol. Biol. 226, 735–745 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, Y., Pogliano, J., Helinski, D.R. & Konieczny, I. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol. Microbiol. 44, 971–979 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Harms, A. et al. Adenylylation of gyrase and topo IV by FicT toxins disrupts bacterial DNA topology. Cell Rep. 12, 1497–1507 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Goeders, N., Drèze, P.L. & Van Melderen, L. Relaxed cleavage specificity within the RelE toxin family. J. Bacteriol. 195, 2541–2549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pedersen, K. et al. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112, 131–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, Y. et al. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12, 913–923 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Winther, K.S. & Gerdes, K. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc. Natl. Acad. Sci. USA 108, 7403–7407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Winther, K.S., Brodersen, D.E., Brown, A.K. & Gerdes, K. VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA. Nat. Commun. 4, 2796 (2013).

    Article  PubMed  CAS  Google Scholar 

  19. Germain, E., Castro-Roa, D., Zenkin, N. & Gerdes, K. Molecular mechanism of bacterial persistence by HipA. Mol. Cell 52, 248–254 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Kaspy, I. et al. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat. Commun. 4, 3001 (2013).

    Article  PubMed  CAS  Google Scholar 

  21. Castro-Roa, D. et al. The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat. Chem. Biol. 9, 811–817 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Pino, A. et al. Doc of prophage P1 is inhibited by its antitoxin partner Phd through fold complementation. J. Biol. Chem. 283, 30821–30827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vetting, M.W. et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch. Biochem. Biophys. 433, 212–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Cheverton, A.M. et al. A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol. Cell 63, 86–96 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iqbal, N., Guérout, A.M., Krin, E., Le Roux, F. & Mazel, D. Comprehensive functional analysis of the 18 Vibrio cholerae N16961 toxin-antitoxin systems substantiates their role in stabilizing the superintegron. J. Bacteriol. 197, 2150–2159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dao-Thi, M.H. et al. Intricate interactions within the ccd plasmid addiction system. J. Biol. Chem. 277, 3733–3742 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Overgaard, M., Borch, J., Jørgensen, M.G. & Gerdes, K. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol. Microbiol. 69, 841–857 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Pino, A. et al. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142, 101–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Afif, H., Allali, N., Couturier, M. & Van Melderen, L. The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Mol. Microbiol. 41, 73–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Loris, R. & Garcia-Pino, A. Disorder- and dynamics-based regulatory mechanisms in toxin-antitoxin modules. Chem. Rev. 114, 6933–6947 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Neuwald, A.F. & Landsman, D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem. Sci. 22, 154–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Ikeuchi, Y., Kitahara, K. & Suzuki, T. The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon. EMBO J. 27, 2194–2203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grosjean, H., Keith, G. & Droogmans, L. Detection and quantification of modified nucleotides in RNA using thin-layer chromatography. Methods Mol. Biol. 265, 357–391 (2004).

    CAS  PubMed  Google Scholar 

  34. Schuber, F. & Pinck, M. On the chemical reactivity of aminoacyl-tRNA ester bond. I. Influence of pH and nature of the acyl group on the rate of hydrolysis. Biochimie 56, 383–390 (1974).

    Article  CAS  PubMed  Google Scholar 

  35. Janssen, B.D., Diner, E.J. & Hayes, C.S. Analysis of aminoacyl- and peptidyl-tRNAs by gel electrophoresis. Methods Mol. Biol. 905, 291–309 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mitkevich, V.A. et al. Thermodynamic characterization of ppGpp binding to EF-G or IF2 and of initiator tRNA binding to free IF2 in the presence of GDP, GTP, or ppGpp. J. Mol. Biol. 402, 838–846 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Tsai, A. et al. Heterogeneous pathways and timing of factor departure during translation initiation. Nature 487, 390–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neubauer, C. et al. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139, 1084–1095 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vetting, M.W., Bareich, D.C., Yu, M. & Blanchard, J.S. Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for N(alpha)-acetylation of ribosomal protein S18. Protein Sci. 17, 1781–1790 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanaka, S., Matsushita, Y., Yoshikawa, A. & Isono, K. Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12. Mol. Gen. Genet. 217, 289–293 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Yoshikawa, A., Isono, S., Sheback, A. & Isono, K. Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol. Gen. Genet. 209, 481–488 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Sprink, T. et al. Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association. Sci. Adv. 2, e1501502 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Guenneugues, M. et al. Mapping the fMet-tRNA(f)(Met) binding site of initiation factor IF2. EMBO J. 19, 5233–5240 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Milon, P. et al. The ribosome-bound initiation factor 2 recruits initiator tRNA to the 30S initiation complex. EMBO Rep. 11, 312–316 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Winther, K., Tree, J.J., Tollervey, D. & Gerdes, K. VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation. Nucleic Acids Res. 44, 9860–9871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia-Pino, A., Zenkin, N. & Loris, R. The many faces of Fic: structural and functional aspects of Fic enzymes. Trends Biochem. Sci. 39, 121–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 12, 291–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Buck, M., Connick, M. & Ames, B.N. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal. Biochem. 129, 1–13 (1983).

    Article  CAS  PubMed  Google Scholar 

  49. Castro-Roa, D. & Zenkin, N. Methods for the assembly and analysis of in vitro transcription-coupled-to-translation systems. Methods Mol. Biol. 1276, 81–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Walker, S.E. & Fredrick, K. Preparation and evaluation of acylated tRNAs. Methods 44, 81–86 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sobott, F., Hernández, H., McCammon, M.G., Tito, M.A. & Robinson, C.V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Korber, P., Stahl, J.M., Nierhaus, K.H. & Bardwell, J.C. Hsp15: a ribosome-associated heat shock protein. EMBO J. 19, 741–748 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.J. is a PhD fellow at the Fonds National de la Recherche Scientifique (aspirant FNRS). This work was supported by grants from the Fonds Jean Brachet and the Fondation Van Buuren to L.D.; from the FNRS (grant number F.4505.16 MIS), the Fonds d'Encouragement à la Recherche ULB (FER-ULB), the Fonds Jean Brachet and the Fondation Van Buuren to A.G.P.; and from the FNRS (grant number 3.4621.12 FRSM, T.0147.15F PDR and J.0061.16F CDR), the Interuniversity Attraction Poles Program initiated by the Belgian Science Policy Office (MICRODEV), the Fonds Jean Brachet and the Fondation Van Buuren to L.V.M. The authors would like to thank J.M. Sanz for initial work in characterizing the ataR–ataT system.

Author information

Authors and Affiliations

Authors

Contributions

D.J., L.D., A.G.P. and L.V.M. designed research; D.J., A.G.P., A.K. and S.C. performed research; D.J., A.K., S.C., F.S., L.D., A.G.-P. and L.V.M. analyzed data; and D.J., A.G.-P. and L.V.M. wrote the paper.

Corresponding authors

Correspondence to Abel Garcia-Pino or Laurence Van Melderen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1, 2, and Supplementary Figures 1–12 (PDF 5663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurėnas, D., Chatterjee, S., Konijnenberg, A. et al. AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet. Nat Chem Biol 13, 640–646 (2017). https://doi.org/10.1038/nchembio.2346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2346

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology