Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins

Abstract

Sacculus is a peptidoglycan (PG) matrix that protects bacteria from osmotic lysis. In Gram-positive organisms, the sacculus is densely functionalized with glycopolymers important for survival, but the way in which assembly occurs is not known. In Staphylococcus aureus, three LCP (LytR-CpsA-Psr) family members have been implicated in attaching the major glycopolymer wall teichoic acid (WTA) to PG, but ligase activity has not been demonstrated for these or any other LCP proteins. Using WTA and PG substrates produced chemoenzymatically, we show that all three proteins can transfer WTA precursors to nascent PGs, establishing that LCP proteins are PG–glycopolymer ligases. Although all S. aureus LCP proteins have the capacity to attach WTA to PG, we show that their cellular functions are not redundant. Strains lacking lcpA have phenotypes similar to those of WTA-null strains, indicating that this is the most important WTA ligase. This work provides a foundation for studying how LCP enzymes participate in cell wall assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depicting the two major biosynthetic pathways that converge to assemble the cell wall of S. aureus.
Figure 2: Reconstitution using purified protein and defined cell wall substrates shows that LcpA is a WTA transferase.
Figure 3: High-resolution mass spectrometry shows that LcpA couples WTA precursors to nascent peptidoglycan, but not to Lipid II.
Figure 4: LcpA is the major LCP protein involved in S. aureus WTA biosynthesis.

Similar content being viewed by others

References

  1. Silhavy, T.J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vollmer, W., Blanot, D. & de Pedro, M.A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Rajagopal, M. & Walker, S. Envelope structures of Gram-positive bacteria. Curr. Top. Microbiol. Immunol. https://dx.doi.org/10.1007/82_2015_5021 (2016).

  4. Neuhaus, F.C. & Baddiley, J. A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 686–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weidenmaier, C. & Peschel, A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat. Rev. Microbiol. 6, 276–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Atilano, M.L. et al. Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 107, 18991–18996 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Campbell, J. et al. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem. Biol. 6, 106–116 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Weidenmaier, C. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 10, 243–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Brown, S., Santa Maria, J.P. Jr. & Walker, S. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Farha, M.A. et al. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem. Biol. 8, 226–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Brown, S. et al. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc. Natl. Acad. Sci. USA 109, 18909–18914 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sham, L.T. et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220–222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruiz, N. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl. Acad. Sci. USA 105, 15553–15557 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yokoyama, K., Miyashita, T., Araki, Y. & Ito, E. Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23. Eur. J. Biochem. 161, 479–489 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Bera, A. et al. Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J. Bacteriol. 189, 280–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Schlag, M. et al. Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol. Microbiol. 75, 864–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Kawai, Y. et al. A widespread family of bacterial cell wall assembly proteins. EMBO J. 30, 4931–4941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dengler, V. et al. Deletion of hypothetical wall teichoic acid ligases in Staphylococcus aureus activates the cell wall stress response. FEMS Microbiol. Lett. 333, 109–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Chan, Y.G., Frankel, M.B., Dengler, V., Schneewind, O. & Missiakas, D. Staphylococcus aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the extracellular medium. J. Bacteriol. 195, 4650–4659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chan, Y.G., Kim, H.K., Schneewind, O. & Missiakas, D. The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes. J. Biol. Chem. 289, 15680–15690 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liszewski Zilla, M., Chan, Y.G., Lunderberg, J.M., Schneewind, O. & Missiakas, D. LytR-CpsA-Psr enzymes as determinants of Bacillus anthracis secondary cell wall polysaccharide assembly. J. Bacteriol. 197, 343–353 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Harrison, J. et al. Lcp1 Is a phosphotransferase responsible for ligating arabinogalactan to peptidoglycan in Mycobacterium tuberculosis. MBio 7, e00972–16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Over, B. et al. LytR-CpsA-Psr proteins in Staphylococcus aureus display partial functional redundancy and the deletion of all three severely impairs septum placement and cell separation. FEMS Microbiol. Lett. 320, 142–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Brown, S., Meredith, T., Swoboda, J. & Walker, S. Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways. Chem. Biol. 17, 1101–1110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brown, S., Zhang, Y.H. & Walker, S. A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chem. Biol. 15, 12–21 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gale, R.T., Sewell, E.W., Garrett, T.A. & Brown, E.D. Reconstituting poly(glycerol phosphate) wall teichoic acid biosynthesis in vitro using authentic substrates. Chem. Sci. 5, 3823–3830 (2014).

    Article  CAS  Google Scholar 

  28. Lee, W. et al. The mechanism of action of lysobactin. J. Am. Chem. Soc. 138, 100–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Ginsberg, C., Zhang, Y.H., Yuan, Y. & Walker, S. In vitro reconstitution of two essential steps in wall teichoic acid biosynthesis. ACS Chem. Biol. 1, 25–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Badurina, D.S., Zolli-Juran, M. & Brown, E.D. CTP: glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values. Biochim. Biophys. Acta 1646, 196–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Ye, X.Y. et al. Better substrates for bacterial transglycosylases. J. Am. Chem. Soc. 123, 3155–3156 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Lebar, M.D. et al. Forming crosslinked peptidoglycan from synthetic gram-negative Lipid II. J. Am. Chem. Soc. 135, 4632–4635 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rebets, Y. et al. Moenomycin resistance mutations in Staphylococcus aureus reduce peptidoglycan chain length and cause aberrant cell division. ACS Chem. Biol. 9, 459–467 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Tipper, D.J., Strominger, J.L. & Ensign, J.C. Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. VII. Mode of action of the bacteriolytic peptidase from Myxobacter and the isolation of intact cell wall polysaccharides. Biochemistry 6, 906–920 (1967).

    Article  CAS  PubMed  Google Scholar 

  35. Perlstein, D.L., Zhang, Y., Wang, T.S., Kahne, D.E. & Walker, S. The direction of glycan chain elongation by peptidoglycan glycosyltransferases. J. Am. Chem. Soc. 129, 12674–12675 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eberhardt, A. et al. Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Microb. Drug Resist. 18, 240–255 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Pasquina, L. et al. A synthetic lethal approach for compound and target identification in Staphylococcus aureus. Nat. Chem. Biol. 12, 40–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Percy, M.G. & Gründling, A. Lipoteichoic acid synthesis and function in Gram-positive bacteria. Annu. Rev. Microbiol. 68, 81–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Peschel, A., Vuong, C., Otto, M. & Götz, F. The d-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob. Agents Chemother. 44, 2845–2847 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Santa Maria, J.P. Jr. et al. Compound–gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. Proc. Natl. Acad. Sci. USA 111, 12510–12515 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Suzuki, T. et al. Wall teichoic acid protects Staphylococcus aureus from inhibition by Congo red and other dyes. J. Antimicrob. Chemother. 67, 2143–2151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hübscher, J. et al. MsrR contributes to cell surface characteristics and virulence in Staphylococcus aureus. FEMS Microbiol. Lett. 295, 251–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Hartman, B.J. & Tomasz, A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J. Bacteriol. 158, 513–516 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsuhashi, M. et al. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to beta-lactam antibiotics in Staphylococcus aureus. J. Bacteriol. 167, 975–980 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, C.Y. et al. Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism. Proc. Natl. Acad. Sci. USA 109, 6496–6501 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kaito, C. & Sekimizu, K. Colony spreading in Staphylococcus aureus. J. Bacteriol. 189, 2553–2557 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Kato, F. & Sugai, M. A simple method of markerless gene deletion in Staphylococcus aureus. J. Microbiol. Methods 87, 76–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, L. et al. Intrinsic lipid preferences and kinetic mechanism of Escherichia coli MurG. Biochemistry 41, 6824–6833 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Tsukamoto, H. & Kahne, D. N-methylimidazolium chloride-catalyzed pyrophosphate formation: application to the synthesis of Lipid I and NDP-sugar donors. Bioorg. Med. Chem. Lett. 21, 5050–5053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Perlstein, D.L., Wang, T.S., Doud, E.H., Kahne, D. & Walker, S. The role of the substrate lipid in processive glycan polymerization by the peptidoglycan glycosyltransferases. J. Am. Chem. Soc. 132, 48–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barrett, D. et al. Analysis of glycan polymers produced by peptidoglycan glycosyltransferases. J. Biol. Chem. 282, 31964–31971 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, T.S. et al. Primer preactivation of peptidoglycan polymerases. J. Am. Chem. Soc. 133, 8528–8530 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Santiago, M. et al. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 16, 252 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy Team Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Blankenberg, D. et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. 89, 19.10:19.10.1–19.10.21 (2010).

    Google Scholar 

  56. Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Haunreiter (Department of Molecular and Cellular Biology, Harvard University) for her generous gift of the strains J126, JH100, RH53, RH72, PS60, PS109, and PS47 (refs. 19, 42), S. Trauger and the Bauer Core Facilities for assistance with MS, and the T. Pang (Harvard Medical School, Department of Microbiology and Immunology) and the Bernhardt lab for their gift of the plasmid pTP63. This research was supported by the NIH (P01AI083214 and R01 AI099144 to S.W.; R01 GM066174 to D.K.; R01 GM076710 to D.K. and S.W.).

Author information

Authors and Affiliations

Authors

Contributions

S.W., D.K., K.S., and L.M.M. designed experiments. K.S. prepared wall teichoic acid substrates, and peptidoglycan substrates were prepared with help from Y.Q.; L.M.M. performed the Tn-seq experiments; K.S. and L.M.M. prepared the spot dilution assays and the MIC experiments; K.S. and L.M.M. made strains used in this study except those received from others as noted (Supplementary Table 5); K.S. cloned, expressed, and purified all LCP proteins and performed reconstitution experiments; S.W. designed and supervised the project; S.W., D.K., and K.S. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Daniel Kahne or Suzanne Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1–6. (PDF 1433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaefer, K., Matano, L., Qiao, Y. et al. In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins. Nat Chem Biol 13, 396–401 (2017). https://doi.org/10.1038/nchembio.2302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing