Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical proteomics reveals ADP-ribosylation of small GTPases during oxidative stress

Abstract

ADP-ribosylation is a post-translational modification that is known to be involved in cellular homeostasis and stress but has been challenging to analyze biochemically. To facilitate the detection of ADP-ribosylated proteins, we show that an alkyne–adenosine analog, N6-propargyl adenosine (N6pA), is metabolically incorporated in mammalian cells and enables fluorescence detection and proteomic analysis of ADP-ribosylated proteins. Notably, our analysis of N6pA-labeled proteins that are upregulated by oxidative stress revealed differential ADP-ribosylation of small GTPases. We discovered that oxidative stress induced ADP-ribosylation of Hras on Cys181 and Cys184 in the C-terminal hypervariable region, which are normally S-fatty-acylated. Downstream Hras signaling is impaired by ADP-ribosylation during oxidative stress, but is rescued by ADP-ribosyltransferase inhibitors. Our study demonstrates that ADP-ribosylation of small GTPases not only is mediated by bacterial toxins but is endogenously regulated in mammalian cells. N6pA provides a useful tool to characterize ADP-ribosylated proteins and their regulatory mechanisms in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N6pA labeling schematic.
Figure 2: N6pA labels ADP-ribosylated proteins in mammalian cells.
Figure 3: Summary and validation of N6pA-labeled proteins.
Figure 4: Oxidative stress induces ADP-ribosylation of Hras at S-palmitoylation sites.
Figure 5: Oxidative stress induces Hras removal of S-palmitoylation.
Figure 6: Hras ADP-ribosylation and signaling during oxidative stress.

Similar content being viewed by others

References

  1. Chambon, P., Weill, J.D. & Mandel, P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11, 39–43 (1963).

    CAS  PubMed  Google Scholar 

  2. Leung, A.K.L. Poly(ADP-ribose): an organizer of cellular architecture. J. Cell Biol. 205, 613–619 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kraus, W.L. PARPs and ADP-ribosylation: 50 years ... and counting. Mol. Cell 58, 902–910 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Barkauskaite, E., Jankevicius, G. & Ahel, I. Structures and mechanisms of enzymes employed in the synthesis and degradation of PARP-dependent protein ADP-ribosylation. Mol. Cell 58, 935–946 (2015).

    CAS  PubMed  Google Scholar 

  5. Lord, C.J. & Ashworth, A. The DNA damage response and cancer therapy. Nature 481, 287–294 (2012).

    CAS  PubMed  Google Scholar 

  6. Meder, V.S., Boeglin, M., de Murcia, G. & Schreiber, V. PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J. Cell Sci. 118, 211–222 (2005).

    CAS  PubMed  Google Scholar 

  7. Smith, S. & de Lange, T. Tankyrase promotes telomere elongation in human cells. Curr. Biol. 10, 1299–1302 (2000).

    CAS  PubMed  Google Scholar 

  8. Gagné, J.-P. et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 36, 6959–6976 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Cho, S.H. et al. PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood 113, 2416–2425 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  11. Westcott, N.P. & Hang, H.C. Chemical reporters for exploring ADP-ribosylation and AMPylation at the host-pathogen interface. Curr. Opin. Chem. Biol. 23, 56–62 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Honjo, T., Nishizuka, Y. & Hayaishi, O. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J. Biol. Chem. 243, 3553–3555 (1968).

    CAS  PubMed  Google Scholar 

  13. Ganesan, A.K., Vincent, T.S., Olson, J.C. & Barbieri, J.T. Pseudomonas aeruginosa exoenzyme S disrupts Ras-mediated signal transduction by inhibiting guanine nucleotide exchange factor-catalyzed nucleotide exchange. J. Biol. Chem. 274, 21823–21829 (1999).

    CAS  PubMed  Google Scholar 

  14. Aktories, K. Bacterial protein toxins that modify host regulatory GTPases. Nat. Rev. Microbiol. 9, 487–498 (2011).

    CAS  PubMed  Google Scholar 

  15. Williams, G.T., Shall, S. & Ford, C.C. Direct radioactive labelling of poly(ADP-ribose) in developing Xenopus laevis embryos. Biosci. Rep. 3, 461–467 (1983).

    CAS  PubMed  Google Scholar 

  16. Jungmichel, S. et al. Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses. Mol. Cell 52, 272–285 (2013).

    CAS  PubMed  Google Scholar 

  17. Zhang, Y., Wang, J., Ding, M. & Yu, Y. Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat. Methods 10, 981–984 (2013).

    CAS  PubMed  Google Scholar 

  18. Morgan, R.K. & Cohen, M.S. A clickable aminooxy probe for monitoring cellular ADP-ribosylation. ACS Chem. Biol. 10, 1778–1784 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang, H., Kim, J.H., Frizzell, K.M., Kraus, W.L. & Lin, H. Clickable NAD analogues for labeling substrate proteins of poly(ADP-ribose) polymerases. J. Am. Chem. Soc. 132, 9363–9372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carter-O'Connell, I. et al. Identifying family-member-specific targets of mono-ARTDs by using a chemical genetics approach. Cell Rep. 14, 621–631 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wallrodt, S., Buntz, A., Wang, Y., Zumbusch, A. & Marx, A. Bioorthogonally functionalized NAD(+) analogues for in-cell visualization of poly(ADP-ribose) formation. Angew. Chem. Int. Ed. Engl. 55, 7660–7664 (2016).

    CAS  PubMed  Google Scholar 

  22. Gibson, B.A. et al. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353, 45–50 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Daniels, C.M., Ong, S.E. & Leung, A.K. The promise of proteomics for the study of ADP-ribosylation. Mol. Cell 58, 911–924 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Grammel, M. & Hang, H.C. Chemical reporters for biological discovery. Nat. Chem. Biol. 9, 475–484 (2013).

    CAS  PubMed  Google Scholar 

  25. Grammel, M., Hang, H. & Conrad, N.K. Chemical reporters for monitoring RNA synthesis and poly(A) tail dynamics. ChemBioChem 13, 1112–1115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chapman, J.D., Gagné, J.-P., Poirier, G.G. & Goodlett, D.R. Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography-tandem mass spectrometry. J. Proteome Res. 12, 1868–1880 (2013).

    CAS  PubMed  Google Scholar 

  27. Daniels, C.M., Ong, S.-E. & Leung, A.K.L. Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. J. Proteome Res. 13, 3510–3522 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ogata, N., Ueda, K. & Hayaishi, O. ADP-ribosylation of histone H2B. Identification of glutamic acid residue 2 as the modification site. J. Biol. Chem. 255, 7610–7615 (1980).

    CAS  PubMed  Google Scholar 

  29. Kanda, T., Sullivan, K.F. & Wahl, G.M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    CAS  PubMed  Google Scholar 

  30. Wahlberg, E. et al. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat. Biotechnol. 30, 283–288 (2012).

    CAS  PubMed  Google Scholar 

  31. Leung, A.K.L. et al. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42, 489–499 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Choudhury, A. et al. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J. Clin. Invest. 109, 1541–1550 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Roth, A.F. et al. Global analysis of protein palmitoylation in yeast. Cell 125, 1003–1013 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahearn, I.M., Haigis, K., Bar-Sagi, D. & Philips, M.R. Regulating the regulator: post-translational modification of RAS. Nat. Rev. Mol. Cell Biol. 13, 39–51 (2011).

    PubMed  Google Scholar 

  35. Percher, A. et al. Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proc. Natl. Acad. Sci. USA 113, 4302–4307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wan, J., Roth, A.F., Bailey, A.O. & Davis, N.G. Palmitoylated proteins: purification and identification. Nat. Protoc. 2, 1573–1584 (2007).

    CAS  PubMed  Google Scholar 

  37. Yount, J.S. et al. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat. Chem. Biol. 6, 610–614 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Avraham, R. & Yarden, Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 12, 104–117 (2011).

    CAS  PubMed  Google Scholar 

  39. Wu, R.-F., Ma, Z., Liu, Z. & Terada, L.S. Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation. Mol. Cell. Biol. 30, 3553–3568 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Choudhary, S., Wang, K.-K.A. & Wang, H.-C.R. Oncogenic H-Ras, FK228, and exogenous H2O2 cooperatively activated the ERK pathway in selective induction of human urinary bladder cancer J82 cell death. Mol. Carcinog. 50, 215–219 (2011).

    CAS  PubMed  Google Scholar 

  41. Kolch, W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6, 827–837 (2005).

    CAS  PubMed  Google Scholar 

  42. Kauppinen, T.M., Suh, S.W., Berman, A.E., Hamby, A.M. & Swanson, R.A. Inhibition of poly(ADP-ribose) polymerase suppresses inflammation and promotes recovery after ischemic injury. J. Cereb. Blood Flow Metab. 29, 820–829 (2009).

    CAS  PubMed  Google Scholar 

  43. West, R.E. Jr., Moss, J., Vaughan, M., Liu, T. & Liu, T.Y. Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J. Biol. Chem. 260, 14428–14430 (1985).

    CAS  PubMed  Google Scholar 

  44. Bivona, T.G. et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481–493 (2006).

    CAS  PubMed  Google Scholar 

  45. Ahearn, I.M. et al. FKBP12 binds to acylated H-ras and promotes depalmitoylation. Mol. Cell 41, 173–185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Goodwin, J.S. et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170, 261–272 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Burgoyne, J.R. et al. Oxidation of HRas cysteine thiols by metabolic stress prevents palmitoylation in vivo and contributes to endothelial cell apoptosis. FASEB J. 26, 832–841 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Evangelista, A.M., Kohr, M.J. & Murphy, E. S-nitrosylation: specificity, occupancy, and interaction with other post-translational modifications. Antioxid. Redox Signal. 19, 1209–1219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ho, G.P.H. et al. S-nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95. Neuron 71, 131–141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Leonard, S.E., Reddie, K.G. & Carroll, K.S. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem. Biol. 4, 783–799 (2009).

    CAS  PubMed  Google Scholar 

  51. Nguyen, T. & Francis, M.B. Practical synthetic route to functionalized rhodamine dyes. Org. Lett. 5, 3245–3248 (2003).

    CAS  PubMed  Google Scholar 

  52. Grammel, M., Luong, P., Orth, K. & Hang, H.C. A chemical reporter for protein AMPylation. J. Am. Chem. Soc. 133, 17103–17105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.P.W. is a Leukemia and Lymphoma Society postdoctoral fellow. The authors thank R. Pagano (Mayo Clinic) for GFP–HA–Rab7, G. Wahl (Salk Institute) for the histone H2B–GFP, M. Phillips (New York University) for the HA–Kras4A and Flag–Kras4B constructs and V. Schreiber (University of Strasbourg) for the ARTD1−/− (PARP1−/−) MEFs. H.C.H. acknowledges support from NIH-NIGMS R01 GM087544 grant.

Author information

Authors and Affiliations

Authors

Contributions

H.C.H. and N.P.W. designed the experiments, analyzed data and wrote the manuscript. H.M. helped with mass spectrometry analysis. J.P.F. performed and helped analyze the NAD metabolite mass spectrometry. N.P.W. performed all other experiments.

Corresponding author

Correspondence to Howard C Hang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–22. (PDF 2533 kb)

Supplementary Dataset 1

List of proteins with a fudge factor greater than 1 and a false discovery rate of 0.05 for the unstressed samples. (XLSX 115 kb)

Supplementary Dataset 2

List of proteins with a fudge factor greater than 1 and a false discovery rate of 0.05 for the stressed samples. (XLSX 111 kb)

Supplementary Dataset 3

List of proteins with a difference of means greater than 2 with the probability of that difference P <0.05 for the stressed vs. the unstressed samples. (XLSX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westcott, N., Fernandez, J., Molina, H. et al. Chemical proteomics reveals ADP-ribosylation of small GTPases during oxidative stress. Nat Chem Biol 13, 302–308 (2017). https://doi.org/10.1038/nchembio.2280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2280

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research