Brief Communication

Biomimetic spinning of artificial spider silk from a chimeric minispidroin

  • Nature Chemical Biology volume 13, pages 262264 (2017)
  • doi:10.1038/nchembio.2269
  • Download Citation
Received:
Accepted:
Published:

Abstract

Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.

  • Subscribe to Nature Chemical Biology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Accessions

European Nucleotide Archive

NCBI Reference Sequence

References

  1. 1.

    et al. Nature 465, 236–238 (2010).

  2. 2.

    et al. Nature 465, 239–242 (2010).

  3. 3.

    et al. Prep. Biochem. Biotechnol. 46, 552–558 (2016).

  4. 4.

    , , & ACS Biomater. Sci. Eng. 1, 577–584 (2015).

  5. 5.

    , , & Adv. Mater. 25, 1216–1220 (2013).

  6. 6.

    et al. Biomacromolecules 14, 1751–1760 (2013).

  7. 7.

    , , & PLoS One 7, e50227 (2012).

  8. 8.

    , , , & J. Mech. Behav. Biomed. Mater. 29, 225–234 (2014).

  9. 9.

    et al. Proc. Natl. Acad. Sci. USA 107, 14059–14063 (2010).

  10. 10.

    , , , & J. Mater. Sci. 42, 8974–8985 (2007).

  11. 11.

    et al. Biomacromolecules 8, 1695–1701 (2007).

  12. 12.

    , , & Proc. Natl. Acad. Sci. USA 105, 6590–6595 (2008).

  13. 13.

    et al. Adv. Mater. 27, 2189–2194 (2015).

  14. 14.

    et al. Biophys. J. 71, 3442–3447 (1996).

  15. 15.

    et al. PLoS Biol. 12, e1001921 (2014).

  16. 16.

    et al. Nat. Commun. 5, 3254 (2014).

  17. 17.

    , & J. Biol. Chem. 285, 40745–40753 (2010).

  18. 18.

    & Nat. Chem. Biol. 11, 309–315 (2015).

  19. 19.

    , , , & Biomacromolecules 15, 4447–4454 (2014).

  20. 20.

    & Int. J. Biol. Macromol. 24, 243–249 (1999).

  21. 21.

    , & Biomacromolecules 17, 427–436 (2016).

  22. 22.

    , , , & Proc. Natl. Acad. Sci. USA 106, 8906–8911 (2009).

  23. 23.

    & Biophys. J. 69, 640–651 (1995).

  24. 24.

    , , & Biomacromolecules 9, 2399–2407 (2008).

  25. 25.

    et al. Sci. Rep. 4, 7326 (2014).

  26. 26.

    , & Adv. Mater. 25, 1275–1279 (2013).

  27. 27.

    , , & Biomacromolecules 7, 3120–3124 (2006).

  28. 28.

    , & Biophys. J. 92, 2885–2895 (2007).

  29. 29.

    et al. Macromolecules 47, 8107–8114 (2014).

  30. 30.

    , , , & Biomacromolecules 12, 3344–3349 (2011).

  31. 31.

    , & Protein Sci. 9, 427–431 (2000).

  32. 32.

    , , , & Anal. Chem. 82, 4648–4651 (2010).

Download references

Acknowledgements

We thank L. Holm, the Swedish University of Agricultural Sciences for help with photography, as well as S. Takeuchi and A. Hsiao at the University of Tokyo for introduction into the use of pulled glass capillaries for fiber formation. We also thank F. Palm, Uppsala University, for lending us a microelectrode puller. Q.J. was supported by a stipend from the Chinese Scholarship Council. The Swedish Research Council (grants no. 2014-2408 and 2014-10371 to A.R. and J.J.), CIMED (to J.J.) and FORMAS (2015-629 to A.R.) supported this work.

Author information

Author notes

    • Marlene Andersson
    •  & Qiupin Jia

    These authors contributed equally to this work.

Affiliations

  1. Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.

    • Marlene Andersson
    • , Jan Johansson
    •  & Anna Rising
  2. Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China.

    • Qiupin Jia
    •  & Qing Meng
  3. ETSI de Caminos and Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.

    • Ana Abella
    • , Xiau-Yeen Lee
    •  & Gustavo R Plaza
  4. Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.

    • Michael Landreh
    •  & Carol V Robinson
  5. Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.

    • Pasi Purhonen
    •  & Hans Hebert
  6. School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.

    • Pasi Purhonen
    •  & Hans Hebert
  7. Department of Engineering Sciences, SciLifeLab, Uppsala University, Uppsala, Sweden.

    • Maria Tenje
  8. Department of Biomedical Engineering, Lund University, Lund, Sweden.

    • Maria Tenje
  9. Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.

    • Jan Johansson
    •  & Anna Rising

Authors

  1. Search for Marlene Andersson in:

  2. Search for Qiupin Jia in:

  3. Search for Ana Abella in:

  4. Search for Xiau-Yeen Lee in:

  5. Search for Michael Landreh in:

  6. Search for Pasi Purhonen in:

  7. Search for Hans Hebert in:

  8. Search for Maria Tenje in:

  9. Search for Carol V Robinson in:

  10. Search for Qing Meng in:

  11. Search for Gustavo R Plaza in:

  12. Search for Jan Johansson in:

  13. Search for Anna Rising in:

Contributions

M.A., Q.J., A.A., X.-Y.L., M.L., and P.P. performed the experiments; A.R., J.J., G.R.P., Q.M., C.V.R., M.T., H.H. supplied equipment and expertise; A.R. and J.J. conceived and designed the study; M.A., A.R. and J.J. wrote the manuscript. All authors edited the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jan Johansson or Anna Rising.

Supplementary information