Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution

Abstract

Gibberellins (GAs) are crucial phytohormones involved in many aspects of plant growth and development, including plant–microbe interactions, which has led to GA production by plant-associated fungi and bacteria as well. While the GA biosynthetic pathways in plants and fungi have been elucidated and found to have arisen independently through convergent evolution, little has been uncovered about GA biosynthesis in bacteria. Some nitrogen-fixing, symbiotic, legume-associated rhizobia, including Bradyrhizobium japonicum—the symbiont of soybean—and Sinorhizobium fredii—a broad-host-nodulating species—contain a putative GA biosynthetic operon, or gene cluster. Through functional characterization of five unknown genes, we demonstrate that this operon encodes the enzymes necessary to produce GA9, thereby elucidating bacterial GA biosynthesis. The distinct nature of these enzymes indicates that bacteria have independently evolved a third biosynthetic pathway for GA production. Furthermore, our results also reveal a central biochemical logic that is followed in all three convergently evolved GA biosynthetic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GA biosynthesis in rhizobia.
Figure 2: Summary of GA-biosynthetic-pathway reactions detected in incubations of B. japonicum gene-deletion bacteroids with GA precursors.
Figure 3: CYP117 is an ent-kaurene oxidase (KO).
Figure 4: CYP114 is an ent-kaurenoic acid oxidase (KAO) and requires FdGA for full functionality.
Figure 5: SDRGA oxidizes GA12-aldehyde (6) to produce GA12 (7).
Figure 6: CYP112 is a GA 20-oxidase.

Similar content being viewed by others

References

  1. Hedden, P. & Sponsel, V. A century of gibberellin research. J. Plant Growth Regul. 34, 740–760 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hedden, P. & Thomas, S.G. Gibberellin biosynthesis and its regulation. Biochem. J. 444, 11–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Bari, R. & Jones, J.D.G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Hayashi, S., Gresshoff, P.M. & Ferguson, B.J. Mechanistic action of gibberellins in legume nodulation. J. Integr. Plant Biol. 56, 971–978 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Peng, J. et al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Sasaki, A. et al. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Bömke, C. & Tudzynski, B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70, 1876–1893 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. MacMillan, J. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J. Plant Growth Regul. 20, 387–442 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Tudzynski, B. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl. Microbiol. Biotechnol. 66, 597–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Morrone, D. et al. Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett. 583, 475–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Magome, H. et al. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc. Natl. Acad. Sci. USA 110, 1947–1952 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhattacharya, A. et al. Characterization of the fungal gibberellin desaturase as a 2-oxoglutarate-dependent dioxygenase and its utilization for enhancing plant growth. Plant Physiol. 160, 837–845 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peters, R.J. in Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches (eds. Bach, T.J. & Rohmer, M.) 233–249 (Springer, 2013).

  14. Atzorn, R., Crozier, A., Wheeler, C.T. & Sandberg, G. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175, 532–538 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Delamuta, J.R.M. et al. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int. J. Syst. Evol. Microbiol. 63, 3342–3351 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Tully, R.E. & Keister, D.L. Cloning and mutagenesis of a cytochrome P-450 locus from Bradyrhizobium japonicum that is expressed anaerobically and symbiotically. Appl. Environ. Microbiol. 59, 4136–4142 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tully, R.E., van Berkum, P., Lovins, K.W. & Keister, D.L. Identification and sequencing of a cytochrome P450 gene cluster from Bradyrhizobium japonicum. Biochim. Biophys. Acta 1398, 243–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Keister, D.L., Tully, R.E. & Van Berkum, P. A cytochrome P450 gene cluster in the Rhizobiaceae. J. Gen. Appl. Microbiol. 45, 301–303 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Méndez, C. et al. Gibberellin oxidase activities in Bradyrhizobium japonicum bacteroids. Phytochemistry 98, 101–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Hershey, D.M., Lu, X., Zi, J. & Peters, R.J. Functional conservation of the capacity for ent-kaurene biosynthesis and an associated operon in certain rhizobia. J. Bacteriol. 196, 100–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galibert, F. et al. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293, 668–672 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Hannemann, F., Bichet, A., Ewen, K.M. & Bernhardt, R. Cytochrome P450 systems–biological variations of electron transport chains. Biochim. Biophys. Acta 1770, 330–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Schäfer, A. et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73 (1994).

    Article  PubMed  Google Scholar 

  24. Sukdeo, N. & Charles, T.C. Application of crossover-PCR-mediated deletion-insertion mutagenesis to analysis of the bdhA-xdhA2-xdhB2 mixed-function operon of Sinorhizobium meliloti. Arch. Microbiol. 179, 301–304 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Mander, L.N. The chemistry of gibberellins: an overview. Chem. Rev. 92, 573–612 (1992).

    Article  CAS  Google Scholar 

  26. Silva, L.F. Construction of cyclopentyl units by ring contraction reactions. Tetrahedron 58, 9137–9161 (2002).

    Article  CAS  Google Scholar 

  27. Citron, C.A., Brock, N.L., Tudzynski, B. & Dickschat, J.S. Labelling studies on the biosynthesis of terpenes in Fusarium fujikuroi. Chem. Commun. (Camb.) 50, 5224–5226 (2014).

    Article  CAS  Google Scholar 

  28. Helliwell, C.A., Chandler, P.M., Poole, A., Dennis, E.S. & Peacock, W.J. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc. Natl. Acad. Sci. USA 98, 2065–2070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rojas, M.C., Hedden, P., Gaskin, P. & Tudzynski, B. The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis. Proc. Natl. Acad. Sci. USA 98, 5838–5843 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bertea, C.M. et al. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med. 71, 40–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Teoh, K.H., Polichuk, D.R., Reed, D.W. & Covello, P.S. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87, 635–642 (2009).

    Article  CAS  Google Scholar 

  32. Du, L. et al. Characterization of a unique pathway for 4-cresol catabolism initiated by phosphorylation in Corynebacterium glutamicum. J. Biol. Chem. 291, 6583–6594 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cao, R. et al. Diterpene cyclases and the nature of the isoprene fold. Proteins 78, 2417–2432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, W. et al. Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum. Sci. Rep. 4, 6214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nelson, D.R. Cytochrome P450 and the individuality of species. Arch. Biochem. Biophys. 369, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Lange, T. Cloning gibberellin dioxygenase genes from pumpkin endosperm by heterologous expression of enzyme activities in Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 6553–6558 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jensen, N.B. et al. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nat. Commun. 2, 273 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Ortiz de Montellano, P.R. & Nelson, S.D. Rearrangement reactions catalyzed by cytochrome P450s. Arch. Biochem. Biophys. 507, 95–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Song, Z.L., Fan, C.A. & Tu, Y.Q. Semipinacol rearrangement in natural product synthesis. Chem. Rev. 111, 7523–7556 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi, K. et al. Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol. 153, 1085–1097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Navarro, L. et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18, 650–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, D.L. et al. Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol. Plant 1, 528–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Wiemann, P. et al. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog. 9, e1003475 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, X., Hershey, D.M., Wang, L., Bogdanove, A.J. & Peters, R.J. An ent-kaurene-derived diterpenoid virulence factor from Xanthomonas oryzae pv. oryzicola. New Phytol. 206, 295–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Anderson, J.P. et al. Plants versus pathogens: an evolutionary arms race. Funct. Plant Biol. 37, 499–512 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Buikema, W.J. et al. Physical and genetic characterization of Rhizobium meliloti symbiotic mutants. J. Mol. Appl. Genet. 2, 249–260 (1983).

    CAS  PubMed  Google Scholar 

  47. Trinick, M.J. Relationships amongst the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala, Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups. J. Appl. Bacteriol. 49, 39–53 (1980).

    Article  Google Scholar 

  48. Bellamine, A., Mangla, A.T., Nes, W.D. & Waterman, M.R. Characterization and catalytic properties of the sterol 14α-demethylase from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 96, 8937–8942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. You, Z., Omura, S., Ikeda, H. & Cane, D.E. Pentalenolactone biosynthesis: molecular cloning and assignment of biochemical function to PtlF, a short-chain dehydrogenase from Streptomyces avermitilis, and identification of a new biosynthetic intermediate. Arch. Biochem. Biophys. 459, 233–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Jones, K.M. Increased production of the exopolysaccharide succinoglycan enhances Sinorhizobium meliloti 1021 symbiosis with the host plant Medicago truncatula. J. Bacteriol. 194, 4322–4331 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Backman, K. & Boyer, H.W. Tetracycline resistance determined by pBR322 is mediated by one polypeptide. Gene 26, 197–203 (1983).

    Article  CAS  PubMed  Google Scholar 

  52. Finan, T.M., Kunkel, B., De Vos, G.F. & Signer, E.R. Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J. Bacteriol. 167, 66–72 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morrone, D. et al. Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl. Microbiol. Biotechnol. 85, 1893–1906 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Ward, J.L. et al. Stereochemistry of the oxidation of gibberellin 20-alcohols, GA15 and GA44, to 20-aldehydes by gibberellin 20-oxidases. Chem. Commun. (Camb.) 13–14 (1997).

  55. Kamiya, Y. & Graebe, J.E. The biosynthesis of all major pea gibberellins in a cell-free system from Pisum sativum. Phytochemistry 22, 681–689 (1983).

    Article  CAS  Google Scholar 

  56. Furuya, T., Arai, Y. & Kino, K. Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2. Appl. Environ. Microbiol. 78, 6087–6094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Binks, R., MacMillan, J. & Pryce, R.J. Combined gas chromatography-mass spectrometry of the methyl esters of gibberellins A1 to A24 and their trimethylsilyl ethers. Phytochemistry 8, 271–284 (1969).

    Article  CAS  Google Scholar 

  58. Graebe, J.E., Hedden, P., Gaskin, P. & MacMillan, J. Biosynthesis of gibberellins A12, A15, A24, A36, and A37 by a cell-free system from Cucurbita maxima. Phytochemistry 13, 1433–1440 (1974).

    Article  CAS  Google Scholar 

  59. Urrutia, O., Hedden, P. & Rojas, M.C. Monooxygenases involved in GA12 and GA14 synthesis in Gibberella fujikuroi. Phytochemistry 56, 505–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Troncoso, C., Cárcamo, J., Hedden, P., Tudzynski, B. & Rojas, M.C. Influence of electron transport proteins on the reactions catalyzed by Fusarium fujikuroi gibberellin monooxygenases. Phytochemistry 69, 672–683 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (GM109773 to R.J.P.) and the Iowa Soybean Association (grant to R.J.P.); a Discovery Grant and an Engage Grant, both from Natural Sciences and Research Engineering Council of Canada (NSERC; grants to T.C.C.); an Ontario Graduate Scholarship (A.M.); the 20:20 Wheat Integrated Strategic Programme at Rothamsted Research, funded by the Biotechnology and Biological Sciences Research Council of the United Kingdom (support to P.H.); and the Fondo Nacional de Desarrollo Cientifico y Tecnologico (grant 1150797 to M.C.R.). Authentic ent-7α-hydroxykaurenoic acid (5), GA15 (8), and GA24 (9)-methyl ester were provided by P. Hedden. ent-[17-14C1]Kaurenoic acid, [17-14C1]GA12, [17-14C1]GA15, [17-14C1]GA24, and [17-14C1]GA9 were obtained from L. Mander (Australian National University, Canberra, Australia).

Author information

Authors and Affiliations

Authors

Contributions

R.S.N. performed the heterologous expression assays, created many of the knockout bacterial strains, and wrote the manuscript. X.L. aided in cloning related to the heterologous expression assays and R.N. provided insightful data analysis. M.M. and M.C.R. performed the bacteroid incubation assays and HPLC analysis, and helped write the manuscript. A.M. and T.C.C. created several of the knockout bacterial strains. P.H. analyzed extracts from the bacteroid incubation assays by GC–MS and helped write the manuscript. R.J.P. conceived the project, aided in data analysis, and helped write the manuscript.

Corresponding author

Correspondence to Reuben J Peters.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–12 and Supplementary Tables 1–9. (PDF 2404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nett, R., Montanares, M., Marcassa, A. et al. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nat Chem Biol 13, 69–74 (2017). https://doi.org/10.1038/nchembio.2232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2232

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology