Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A photoactivatable Cre–loxP recombination system for optogenetic genome engineering

Abstract

Genome engineering techniques represented by the Cre–loxP recombination system have been used extensively for biomedical research. However, powerful and useful techniques for genome engineering that have high spatiotemporal precision remain elusive. Here we develop a highly efficient photoactivatable Cre recombinase (PA-Cre) to optogenetically control genome engineering in vivo. PA-Cre is based on the reassembly of split Cre fragments by light-inducible dimerization of the Magnet system. PA-Cre enables sharp induction (up to 320-fold) of DNA recombination and is efficiently activated even by low-intensity illumination (0.04 W m−2) or short periods of pulsed illumination (30 s). We demonstrate that PA-Cre allows for efficient DNA recombination in an internal organ of living mice through noninvasive external illumination using a LED light source. The present PA-Cre provides a powerful tool to greatly facilitate optogenetic genome engineering in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of a photoactivatable Cre–loxP recombination system.
Figure 2: Characterization of PA-Cre.
Figure 3: DNA recombination kinetics of PA-Cre.
Figure 4: PA-Cre activation with shorter periods of illumination.
Figure 5: PA-Cre-induced DNA recombination in mice.

Similar content being viewed by others

References

  1. Akopian, A. & Marshall Stark, W. Site-specific DNA recombinases as instruments for genomic surgery. Adv. Genet. 55, 1–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Gaj, T., Sirk, S.J. & Barbas, C.F. III. Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol. Bioeng. 111, 1–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Van Duyne, G.D. Cre recombinase. Microbiol. Spectr. 3, http://dx.doi.org/10.1128/microbiolspec.MDNA3-0014-2014 (2015).

  4. Meinke, G., Bohm, A., Hauber, J., Pisabarro, M.T. & Buchholz, F. Cre recombinase and other tyrosine recombinases. Chem. Rev. (2016).

  5. Sternberg, N. Bacteriophage P1 site-specific recombination. III. Strand exchange during recombination at lox sites. J. Mol. Biol. 150, 603–608 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Gierut, J.J., Jacks, T.E. & Haigis, K.M. Strategies to achieve conditional gene mutation in mice. Cold Spring Harb. Protoc. 2014, 339–349 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Kellendonk, C. et al. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24, 1404–1411 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Casanova, E. et al. ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis 34, 208–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Jullien, N., Sampieri, F., Enjalbert, A. & Herman, J.P. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res. 31, e131 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Guo, Z.M. et al. Temporal control of Cre recombinase-mediated in vitro DNA recombination by Tet-on gene expression system. Acta Biochim. Biophys. Sin. (Shanghai) 37, 133–138 (2005).

    Article  CAS  Google Scholar 

  13. Sando, R. III et al. Inducible control of gene expression with destabilized Cre. Nat. Methods 10, 1085–1088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, D., Wu, C.F., Shi, B. & Xu, Y.M. Tamoxifen and toremifene cause impairment of learning and memory function in mice. Pharmacol. Biochem. Behav. 71, 269–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Roshangar, L., Rad, J.S. & Afsordeh, K. Maternal tamoxifen treatment alters oocyte differentiation in the neonatal mice: inhibition of oocyte development and decreased folliculogenesis. J. Obstet. Gynaecol. Res. 36, 224–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Laplante, M. & Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Link, K.H., Shi, Y. & Koh, J.T. Light activated recombination. J. Am. Chem. Soc. 127, 13088–13089 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Edwards, W.F., Young, D.D. & Deiters, A. Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells. ACS Chem. Biol. 4, 441–445 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Lu, X. et al. Optochemogenetics (OCG) allows more precise control of genetic engineering in mice with CreER regulators. Bioconjug. Chem. 23, 1945–1951 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Inlay, M.A. et al. Synthesis of a photocaged tamoxifen for light-dependent activation of Cre-ER recombinase-driven gene modification. Chem. Commun. (Camb.) 49, 4971–4973 (2013).

    Article  CAS  Google Scholar 

  21. Gorka, A.P., Nani, R.R., Zhu, J., Mackem, S. & Schnermann, M.J. A near-IR uncaging strategy based on cyanine photochemistry. J. Am. Chem. Soc. 136, 14153–14159 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown, K.A. et al. Light-cleavable rapamycin dimer as an optical trigger for protein dimerization. Chem. Commun. (Camb.) 51, 5702–5705 (2015).

    Article  CAS  Google Scholar 

  23. Faal, T. et al. 4-Hydroxytamoxifen probes for light-dependent spatiotemporal control of Cre-ER mediated reporter gene expression. Mol. Biosyst. 11, 783–790 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Luo, J. et al. Genetically encoded optical activation of DNA recombination in human cells. Chem. Commun. (Camb.) 52, 8529–8532 (2016).

    Article  CAS  Google Scholar 

  25. Kennedy, M.J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boulina, M., Samarajeewa, H., Baker, J.D., Kim, M.D. & Chiba, A. Live imaging of multicolor-labeled cells in Drosophila. Development 140, 1605–1613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schindler, S.E. et al. Photo-activatable Cre recombinase regulates gene expression in vivo. Sci. Rep. 5, 13627 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Zoltowski, B.D. et al. Conformational switching in the fungal light sensor Vivid. Science 316, 1054–1057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, Z. & Lutz, B. Cre recombinase-mediated inversion using lox66 and lox71: method to introduce conditional point mutations into the CREB-binding protein. Nucleic Acids Res. 30, e90 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thomson, J.G., Rucker, E.B. III & Piedrahita, J.A. Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. Genesis 36, 162–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Oberdoerffer, P., Otipoby, K.L., Maruyama, M. & Rajewsky, K. Unidirectional Cre-mediated genetic inversion in mice using the mutant loxP pair lox66/lox71. Nucleic Acids Res. 31, e140 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Araki, K., Okada, Y., Araki, M. & Yamamura, K. Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol. 10, 29 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cai, D., Cohen, K.B., Luo, T., Lichtman, J.W. & Sanes, J.R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fenno, L.E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods 11, 763–772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, G. & Saito, I. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216, 55–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Langer, S.J., Ghafoori, A.P., Byrd, M. & Leinwand, L. A genetic screen identifies novel non-compatible loxP sites. Nucleic Acids Res. 30, 3067–3077 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo, F., Gopaul, D.N. & van Duyne, G.D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Vaidya, A.T., Chen, C.H., Dunlap, J.C., Loros, J.J. & Crane, B.R. Structure of a light-activated LOV protein dimer that regulates transcription. Sci. Signal. 4, ra50 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, J.H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6, e18556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shimshek, D.R. et al. Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32, 19–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Guo, F., Gopaul, D.N. & Van Duyne, G.D. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA 96, 7143–7148 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Gautier, A. et al. How to control proteins with light in living systems. Nat. Chem. Biol. 10, 533–541 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Taslimi, A. et al. Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase. Nat. Chem. Biol. 12, 425–430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Casanova, E., Lemberger, T., Fehsenfeld, S., Mantamadiotis, T. & Schütz, G. Alpha complementation in the Cre recombinase enzyme. Genesis 37, 25–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Tang, J.C. et al. Cell type-specific manipulation with GFP-dependent Cre recombinase. Nat. Neurosci. 18, 1334–1341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Müller, K., Naumann, S., Weber, W. & Zurbriggen, M.D. Optogenetics for gene expression in mammalian cells. Biol. Chem. 396, 145–152 (2015).

    Article  PubMed  CAS  Google Scholar 

  51. Ganter, B., Fu, Sl. & Lipsick, J.S. D-type cyclins repress transcriptional activation by the v-Myb but not the c-Myb DNA-binding domain. EMBO J. 17, 255–268 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rogers, S., Wells, R. & Rechsteiner, M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364–368 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Nihongaki for his technical assistance in experiments with mice. We also thank S.E. Park, J.R. Quejada and S. Su for proofreading the manuscript. This work was supported by Platform for Dynamic Approaches to Living System from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) and Japan Agency for Medical Research and Development (AMED). This work was also supported by a grant from the Takeda Science Foundation to M.S. This work was also supported by grants from Japan Society for the Promotion of Science (JSPS) to M.S. and JSPS Postdoctoral Fellowships for Research Abroad to F.K.

Author information

Authors and Affiliations

Authors

Contributions

F.K., R.O. and M.S. conceived the project and designed the experiments. F.K. and R.O. performed the experiments. F.K., R.O. and M.S. wrote the manuscript. F.K., M.Y. and M.S. edited the manuscript and reviewed the data.

Corresponding author

Correspondence to Moritoshi Sato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–13, Supplementary References and Supplementary Note. (PDF 12292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawano, F., Okazaki, R., Yazawa, M. et al. A photoactivatable Cre–loxP recombination system for optogenetic genome engineering. Nat Chem Biol 12, 1059–1064 (2016). https://doi.org/10.1038/nchembio.2205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing