Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enzymatic hydrolysis by transition-metal-dependent nucleophilic aromatic substitution

Abstract

Nitroaromatic compounds are typically toxic and resistant to degradation. Bradyrhizobium species strain JS329 metabolizes 5-nitroanthranilic acid (5NAA), which is a molecule secreted by Streptomyces scabies, the plant pathogen responsible for potato scab. The first biodegradation enzyme is 5NAA-aminohydrolase (5NAA-A), a metalloprotease family member that converts 5NAA to 5-nitrosalicylic acid. We characterized 5NAA-A biochemically and obtained snapshots of its mechanism. 5NAA-A, an octamer that can use several divalent transition metals for catalysis in vitro, employs a nucleophilic aromatic substitution mechanism. Unexpectedly, the metal in 5NAA-A is labile but is readily loaded in the presence of substrate. 5NAA-A is specific for 5NAA and cannot hydrolyze other tested derivatives, which are likewise poor inhibitors. The 5NAA-A structure and mechanism expand our understanding of the chemical ecology of an agriculturally important plant and pathogen, and will inform bioremediation and biocatalytic approaches to mitigate the environmental and ecological impact of nitroanilines and other challenging substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure and substrate binding features of 5NAA-A.
Figure 2: Dependence of 5NAA-A on metal ions for activity.
Figure 3: Metal ion, substrate, and product binding to 5NAA-A measured by ITC.
Figure 4: Metal coordination and proposed catalytic mechanism for 5NAA-A.

Similar content being viewed by others

Accession codes

Accessions

Swiss-Prot

References

  1. McGuinness, M. & Dowling, D. Plant-associated bacterial degradation of toxic organic compounds in soil. Int. J. Environ. Res. Public Health 6, 2226–2247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davies, J. Small molecules: the lexicon of biodiversity. J. Biotechnol. 129, 3–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Spain, J.C. Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol. 49, 523–555 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Symons, Z.C. & Bruce, N.C. Bacterial pathways for degradation of nitroaromatics. Nat. Prod. Rep. 23, 845–850 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Ju, K.S. & Parales, R.E. Nitroaromatic compounds, from synthesis to biodegradation. Microbiol. Mol. Biol. Rev. 74, 250–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parry, R., Nishino, S. & Spain, J. Naturally-occurring nitro compounds. Nat. Prod. Rep. 28, 152–167 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Winkler, R. & Hertweck, C. Biosynthesis of nitro compounds. ChemBioChem 8, 973–977 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi, A., Kobayashi, Y.O., Someya, N. & Ikeda, S. Community analysis of root- and tuber-associated bacteria in field-grown potato plants harboring different resistance levels against common scab. Microbes Environ. 30, 301–309 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Compant, S., Duffy, B., Nowak, J., Clément, C. & Barka, E.A. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951–4959 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diallo, S. et al. Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol. Ecol. 75, 351–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. King, R.R., Lawrence, C.H. & Calhoun, L.A. Unusual production of 5-nitroanthranilic acid by Streptomyces scabies. Phytochemistry 49, 1265–1267 (1998).

    Article  CAS  Google Scholar 

  12. King, R.R. & Calhoun, L.A. The thaxtomin phytotoxins: sources, synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 70, 833–841 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Lerat, S., Simao-Beaunoir, A.M. & Beaulieu, C. Genetic and physiological determinants of Streptomyces scabies pathogenicity. Mol. Plant Pathol. 10, 579–585 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qu, Y. & Spain, J.C. Biodegradation of 5-nitroanthranilic acid by Bradyrhizobium sp. strain JS329. Appl. Environ. Microbiol. 76, 1417–1422 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prashar, P., Kapoor, N. & Sachdeva, S. Rhizosphere: its structure, bacterial diversity and significance. Rev. Environ. Sci. Biotechnol. 13, 63–77 (2014).

    Article  CAS  Google Scholar 

  16. Qu, Y. & Spain, J.C. Molecular and biochemical characterization of the 5-nitroanthranilic acid degradation pathway in Bradyrhizobium sp. strain JS329. J. Bacteriol. 193, 3057–3063 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Conticello, S.G., Langlois, M.A. & Neuberger, M.S. Insights into DNA deaminases. Nat. Struct. Mol. Biol. 14, 7–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Boyen, A. et al. Acetylornithine deacetylase, succinyldiaminopimelate desuccinylase and carboxypeptidase G2 are evolutionarily related. Gene 116, 1–6 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Makarova, K.S. & Grishin, N.V. The Zn-peptidase superfamily: functional convergence after evolutionary divergence. J. Mol. Biol. 292, 11–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Rowsell, S. et al. Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Structure 5, 337–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Shi, D., Yu, X., Roth, L., Tuchman, M. & Allewell, N.M. Structure of a novel N-acetyl-L-citrulline deacetylase from Xanthomonas campestris. Biophys. Chem. 126, 86–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Nocek, B.P., Gillner, D.M., Fan, Y., Holz, R.C. & Joachimiak, A. Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase. J. Mol. Biol. 397, 617–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martínez-Rodríguez, S. et al. Mutational and structural analysis of L-N-carbamoylase reveals new insights into a peptidase M20/M25/M40 family member. J. Bacteriol. 194, 5759–5768 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Maret, W. & Li, Y. Coordination dynamics of zinc in proteins. Chem. Rev. 109, 4682–4707 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Michaelis, L., Menten, M.L., Johnson, K.A. & Goody, R.S. The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry 50, 8264–8269 (2011).

    Article  PubMed  CAS  Google Scholar 

  27. Jefferson, J.R., Hunt, J.B. & Ginsburg, A. Characterization of indo-1 and quin-2 as spectroscopic probes for Zn2(+)-protein interactions. Anal. Biochem. 187, 328–336 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Foster, A.W., Osman, D. & Robinson, N.J. Metal preferences and metallation. J. Biol. Chem. 289, 28095–28103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, D., Hurst, T.K., Thompson, R.B. & Fierke, C.A. Genetically encoded ratiometric biosensors to measure intracellular exchangeable zinc in Escherichia coli. J. Biomed. Opt. 16, 087011 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pelmenschikov, V., Blomberg, M.R.A. & Siegbahn, P.E. A theoretical study of the mechanism for peptide hydrolysis by thermolysin. J. Biol. Inorg. Chem. 7, 284–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Slobodkin, A., Reysenbach, A.L., Mayer, F. & Wiegel, J. Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. Int. J. Syst. Bacteriol. 47, 969–974 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Silverman, R.B. in The Organic Chemistry of Enzyme-Catalyzed Reactions 2nd edn., Ch. 6, 251–288 (Academic Press, 2002).

  33. Feig, A.L. & Uhlenbeck, O.C. in The RNA world: The Nature of Modern RNA Suggests a Prebiotic RNA 2nd edn. (eds. Gesteland R.F., Cech T. & Atkins J.F.) Chapter 12, 287–319 (Cold Spring Harbor Laboratory Press, 1999).

  34. Adams, J.A. Kinetic and catalytic mechanisms of protein kinases. Chem. Rev. 101, 2271–2290 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Steitz, T.A. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 274, 17395–17398 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Armstrong, R.N., Kondo, H., Granot, J., Kaiser, E.T. & Mildvan, A.S. Magnetic resonance and kinetic studies of the manganese(ii) ion and substrate complexes of the catalytic subunit of adenosine 3′,5′-monophosphate dependent protein kinase from bovine heart. Biochemistry 18, 1230–1238 (1979).

    Article  CAS  PubMed  Google Scholar 

  37. Culotta, V.C. & Daly, M.J. Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast. Antioxid. Redox Signal. 19, 933–944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lambert, D.H., Powelson, M.L. & Stevenson, W.R. Nutritional interactions influencing diseases of potato. Am. J. Pot. Res. 82, 309–319 (2005).

    Article  CAS  Google Scholar 

  39. Cvetkovic, A. et al. Microbial metalloproteomes are largely uncharacterized. Nature 466, 779–782 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Gerlt, J.A. & Babbitt, P.C. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu. Rev. Biochem. 70, 209–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Orwig, S.D. & Lieberman, R.L. Biophysical characterization of the olfactomedin domain of myocilin, an extracellular matrix protein implicated in inherited forms of glaucoma. PLoS One 6, e16347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Terwilliger, T.C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moriarty, N.W., Grosse-Kunstleve, R.W. & Adams, P.D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D Biol. Crystallogr. 65, 1074–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. & Svergun, D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).

    Article  CAS  Google Scholar 

  49. Svergun, D.I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Volkov, V.V. & Svergun, D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 (2003).

    Article  CAS  Google Scholar 

  51. Kozin, M.B. & Svergun, D.I. Automated matching of high- and low-resolution structural models. J. Appl. Crystallogr. 34, 33–41 (2001).

    Article  CAS  Google Scholar 

  52. McWilliam, H. et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 41, W597–W600 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tung, C.H., Huang, J.W. & Yang, J.M. Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database. Genome Biol. 8, R31 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kozakov, D. et al. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat. Protoc. 10, 733–755 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jones, D.T., Taylor, W.R. & Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by a Pew Scholar and NSF CAREER award (0845445) to R.L.L., a Georgia Tech Molecular Biophysics Training Award to S.K., a Petit Undergraduate Research Fellowship and a President's Undergraduate Research Award to D.P.H., and a Georgia Internship for Teachers award to C.M.B. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. Work performed at Bio-CAT was supported by NIH NIGMS 9P41 GM103622. Use of the Pilatus 3 1M detector was provided by NIGMS 1S10OD018090-01.

Author information

Authors and Affiliations

Authors

Contributions

S.K., R.L.L., D.P.H., and J.C.S. designed experiments. S.K., D.P.H., C.M.B., and Z.K. conducted enzymatic assays. S.K., D.P.H., and R.L.L. solved, refined, and analyzed crystal structures. C.M.B. and C.U.U. cloned, expressed, and purified enzymes. S.C. acquired and analyzed SAXS data. R.L.L., J.C.S., S.K., and D.P.H. wrote the manuscript.

Corresponding author

Correspondence to Raquel L Lieberman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–7. (PDF 8051 kb)

Supplementary Dataset 1

Phylogenetic tree of top 2255 protein sequences related to 5NAA-A. Red: 5NAA-A. (PDF 6829 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyoncu, S., Heaner, D., Kurt, Z. et al. Enzymatic hydrolysis by transition-metal-dependent nucleophilic aromatic substitution. Nat Chem Biol 12, 1031–1036 (2016). https://doi.org/10.1038/nchembio.2191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2191

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing