Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Serine is a new target residue for endogenous ADP-ribosylation on histones

Abstract

ADP-ribosylation (ADPr) is a biologically and clinically important post-translational modification, but little is known about the amino acids it targets on cellular proteins. Here we present a proteomic approach for direct in vivo identification and quantification of ADPr sites on histones. We have identified 12 unique ADPr sites in human osteosarcoma cells and report serine ADPr as a new type of histone mark that responds to DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Partial FASP method for increased sequence coverage of histones.
Figure 2: Identification of histone ADPr marks.
Figure 3: Modulation of serine ADPr marks on core histones after DNA damage.

Similar content being viewed by others

References

  1. Feng, F.Y., de Bono, J.S., Rubin, M.A. & Knudsen, K.E. Mol. Cell 58, 925–934 (2015).

    Article  CAS  Google Scholar 

  2. Daniels, C.M., Ong, S.E. & Leung, A.K. Mol. Cell 58, 911–924 (2015).

    Article  CAS  Google Scholar 

  3. Hottiger, M.O. Annu. Rev. Biochem. 84, 227–263 (2015).

    Article  CAS  Google Scholar 

  4. Huang, H., Lin, S., Garcia, B.A. & Zhao, Y. Chem. Rev. 115, 2376–2418 (2015).

    Article  CAS  Google Scholar 

  5. Tan, M. et al. Cell 146, 1016–1028 (2011).

    Article  CAS  Google Scholar 

  6. Wiśniewski, J.R., Zougman, A., Nagaraj, N. & Mann, M. Nat. Methods 6, 359–362 (2009).

    Article  Google Scholar 

  7. Rodriguez-Collazo, P., Leuba, S.H. & Zlatanova, J. Nucleic Acids Res. 37, e81 (2009).

    Article  Google Scholar 

  8. Jungmichel, S. et al. Mol. Cell 52, 272–285 (2013).

    Article  CAS  Google Scholar 

  9. Daniels, C.M., Ong, S.E. & Leung, A.K. J. Proteome Res. 13, 3510–3522 (2014).

    Article  CAS  Google Scholar 

  10. Palazzo, L. et al. Biochem. J. 468, 293–301 (2015).

    Article  CAS  Google Scholar 

  11. Daniels, C.M., Thirawatananond, P., Ong, S.E., Gabelli, S.B. & Leung, A.K. Sci. Rep. 5, 18271 (2015).

    Article  CAS  Google Scholar 

  12. Rosenthal, F., Nanni, P., Barkow-Oesterreicher, S. & Hottiger, M.O. J. Proteome Res. 14, 4072–4079 (2015).

    Article  CAS  Google Scholar 

  13. Steentoft, C. et al. Nat. Methods 8, 977–982 (2011).

    Article  CAS  Google Scholar 

  14. Cox, J. & Mann, M. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  15. Messner, S. et al. Nucleic Acids Res. 38, 6350–6362 (2010).

    Article  CAS  Google Scholar 

  16. Cervantes-Laurean, D., Loflin, P.T., Minter, D.E., Jacobson, E.L. & Jacobson, M.K. J. Biol. Chem. 270, 7929–7936 (1995).

    Article  CAS  Google Scholar 

  17. Messner, S. & Hottiger, M.O. Trends Cell Biol. 21, 534–542 (2011).

    Article  CAS  Google Scholar 

  18. Ong, S.E. et al. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  19. D'Amours, D., Desnoyers, S., D'Silva, I. & Poirier, G.G. Biochem. J. 342, 249–268 (1999).

    Article  CAS  Google Scholar 

  20. Moremen, K.W., Tiemeyer, M. & Nairn, A.V. Nat. Rev. Mol. Cell Biol. 13, 448–462 (2012).

    Article  CAS  Google Scholar 

  21. Wang, F. & Higgins, J.M. Trends Cell Biol. 23, 175–184 (2013).

    Article  CAS  Google Scholar 

  22. Affar, E.B. et al. Anal. Biochem. 259, 280–283 (1998).

    Article  CAS  Google Scholar 

  23. Slade, D. et al. Nature 477, 616–620 (2011).

    Article  CAS  Google Scholar 

  24. Kleine, H. et al. Mol. Cell 32, 57–69 (2008).

    Article  CAS  Google Scholar 

  25. Rappsilber, J., Ishihama, Y. & Mann, M. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  Google Scholar 

  26. Kelstrup, C.D., Young, C., Lavallee, R., Nielsen, M.L. & Olsen, J.V. J. Proteome Res. 11, 3487–3497 (2012).

    Article  CAS  Google Scholar 

  27. Cox, J. et al. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  Google Scholar 

  28. Hengel, S.M. & Goodlett, D.R. Int. J. Mass Spectrom. 312, 114–121 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to A. Zhiteneva, W. Earnshaw (University of Edinburgh) and M. Tatham (University of Dundee) for comments on the manuscript. Chicken bursal lymphoma DT40 cells were a gift from W. Earnshaw (Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK). pGEX-4T1 GST-PARP10cd plasmid was a gift from B. Lüscher (Department of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany). This work was funded by Deutsche Forschungsgemeinschaft (Cellular Stress Responses in Aging-Associated Diseases) (grant EXC 229 to I.M.) and the European Union's Horizon 2020 research and innovation program (Marie Sklodowska-Curie grant agreement no. 657501 to J.J.B. and I.M.). The work in the Ahel laboratory is funded by the Wellcome Trust (grant 101794) and the European Research Council (grant 281739).

Author information

Authors and Affiliations

Authors

Contributions

I.M., O.L. and J.J.B. designed research. O.L. and J.J.B. performed experiments and acquired and analyzed MS data. T.C. optimized MS methods and contributed to the acquisition and analysis of MS data. Q.Z. performed histone purification and digestion experiments. I. Atanassov performed bioinformatics analyses. A.S. performed immuno-slot blot experiments. L.P. and R.Z. performed protein purification and in vitro assays. I. Ahel and R.Z. contributed to the histone purification experiments and supporting studies. I.M. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Ivan Matic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–11, Supplementary Tables 1–2 and Supplementary Note. (PDF 16867 kb)

Supplementary Dataset 1

SILAC-based quantification of histone marks: DNA damage and olaparib experiments. (XLSX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leidecker, O., Bonfiglio, J., Colby, T. et al. Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat Chem Biol 12, 998–1000 (2016). https://doi.org/10.1038/nchembio.2180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2180

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research