Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder

Abstract

We present a new strategy for systematic identification of phosphotyrosine (pTyr) by affinity purification mass spectrometry (AP-MS) using a Src homology 2 (SH2)-domain-derived pTyr superbinder as the affinity reagent. The superbinder allows for markedly deeper coverage of the Tyr phosphoproteome than anti-pTyr antibodies when an optimal amount is used. We identified 20,000 distinct phosphotyrosyl peptides and >10,000 pTyr sites, of which 36% were 'novel', from nine human cell lines using the superbinder approach. Tyrosine kinases, SH2 domains and phosphotyrosine phosphatases were preferably phosphorylated, suggesting that the toolkit of kinase signaling is subject to intensive regulation by phosphorylation. Cell-type-specific global kinase activation patterns inferred from label-free quantitation of Tyr phosphorylation guided the design of experiments to inhibit cancer cell proliferation by blocking the highly activated tyrosine kinases. Therefore, the superbinder is a highly efficient and cost-effective alternative to conventional antibodies for systematic and quantitative characterization of the tyrosine phosphoproteome under normal or pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Src superbinder as an efficient reagent for affinity purification of phosphotyrosyl peptides.
Figure 2: The pTyr superbinders compare favorably to antibodies in pTyr enrichment.
Figure 3: Ultra-deep Tyr phosphoproteomics by superbinder AP-MS/MS.
Figure 4: Functional features of the Tyr phosphoproteome.
Figure 5: Superbinder-based quantitative phosphoproteomics identified kinases that are potential cancer drivers.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Sharma, K. et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, M.S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, L. et al. Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact. Nat. Commun. 5, 5469 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, H. et al. Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat. Protoc. 8, 461–480 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. de Graaf, E.L., Giansanti, P., Altelaar, A.F. & Heck, A.J. Single-step enrichment by Ti4+-IMAC and label-free quantitation enables in-depth monitoring of phosphorylation dynamics with high reproducibility and temporal resolution. Mol. Cell. Proteomics 13, 2426–2434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Y. et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteomics 4, 1240–1250 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Tinti, M. et al. The 4G10, pY20 and p-TYR-100 antibody specificity: profiling by peptide microarrays. Nat. Biotechnol. 29, 571–577 (2012).

    CAS  Google Scholar 

  11. Jones, R.B., Gordus, A., Krall, J.A. & MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Kaneko, T. et al. Superbinder SH2 domains act as antagonists of cell signaling. Sci. Signal. 5, ra68 (2012).

    Article  PubMed  CAS  Google Scholar 

  13. Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Findlay, G.M. et al. Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Cell 152, 1008–1020 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Huyer, G. et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272, 843–851 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, H. et al. Defining the specificity space of the human SRC homology 2 domain. Mol. Cell. Proteomics 7, 768–784 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A.J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Subik, K. et al. The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines. Breast Cancer (Auckl.) 4, 35–41 (2010).

    PubMed Central  Google Scholar 

  19. Matlock, M.K., Holehouse, A.S. & Naegle, K.M. ProteomeScout: a repository and analysis resource for post-translational modifications and proteins. Nucleic Acids Res. 43, D521–D530 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Hornbeck, P.V. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40, D261–D270 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Lu, C.T. et al. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res. 41, D295–D305 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. UniProt Consortium. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42, D191–D198 (2014).

  23. Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell. Proteomics 11, M111.014050 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Stokes, M.P. et al. Complementary PTM Profiling of Drug Response in Human Gastric Carcinoma by Immunoaffinity and IMAC Methods with Total Proteome Analysis. Proteomes 3, 160–183 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hubbard, S.R., Mohammadi, M. & Schlessinger, J. Autoregulatory mechanisms in protein-tyrosine kinases. J. Biol. Chem. 273, 11987–11990 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Qian, X. et al. The Tensin-3 protein, including its SH2 domain, is phosphorylated by Src and contributes to tumorigenesis and metastasis. Cancer Cell 16, 246–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin, L.L. et al. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity. Mol. Cell. Proteomics 14, 695–706 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andersen, J.N. et al. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 21, 7117–7136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitra, S., Beach, C., Feng, G.S. & Plattner, R. SHP-2 is a novel target of Abl kinases during cell proliferation. J. Cell Sci. 121, 3335–3346 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Feng, J. et al. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol. Cell. Biol. 17, 2497–2501 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, J., Billingsley, M.L., Kincaid, R.L. & Siraganian, R.P. Phosphorylation of Syk activation loop tyrosines is essential for Syk function. An in vivo study using a specific anti-Syk activation loop phosphotyrosine antibody. J. Biol. Chem. 275, 35442–35447 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Xie, Y., Pendergast, A.M. & Hung, M.C. Dominant-negative mutants of Grb2 induced reversal of the transformed phenotypes caused by the point mutation-activated rat HER-2/Neu. J. Biol. Chem. 270, 30717–30724 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Sepp-Lorenzino, L. et al. Signal transduction pathways induced by heregulin in MDA-MB-453 breast cancer cells. Oncogene 12, 1679–1687 (1996).

    CAS  PubMed  Google Scholar 

  36. Dey, B.R., Frick, K., Lopaczynski, W., Nissley, S.P. & Furlanetto, R.W. Evidence for the direct interaction of the insulin-like growth factor I receptor with IRS-1, Shc, and Grb10. Mol. Endocrinol. 10, 631–641 (1996).

    CAS  PubMed  Google Scholar 

  37. Tartare-Deckert, S., Sawka-Verhelle, D., Murdaca, J. & Van Obberghen, E. Evidence for a differential interaction of SHC and the insulin receptor substrate-1 (IRS-1) with the insulin-like growth factor-I (IGF-I) receptor in the yeast two-hybrid system. J. Biol. Chem. 270, 23456–23460 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Takeuchi, K. & Ito, F. Receptor tyrosine kinases and targeted cancer therapeutics. Biol. Pharm. Bull. 34, 1774–1780 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Levitzki, A. Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical performance. Annu. Rev. Pharmacol. Toxicol. 53, 161–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Zaman, N. et al. Signaling network assessment of mutations and copy number variations predict breast cancer subtype-specific drug targets. Cell Rep. 5, 216–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Esteva, F.J., Yu, D., Hung, M.C. & Hortobagyi, G.N. Molecular predictors of response to trastuzumab and lapatinib in breast cancer. Nat. Rev. Clin. Oncol. 7, 98–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Sabbatini, P. et al. GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol. Cancer Ther. 8, 2811–2820 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, H.G. et al. Discovery of a potent and selective DDR1 receptor tyrosine kinase inhibitor. ACS Chem. Biol. 8, 2145–2150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, S. et al. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat. Med. 17, 461–469 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Lee, M.J. et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149, 780–794 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hochgräfe, F. et al. Tyrosine phosphorylation profiling reveals the signaling network characteristics of Basal breast cancer cells. Cancer Res. 70, 9391–9401 (2010).

    Article  PubMed  CAS  Google Scholar 

  48. Lemmon, M.A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krause, D.S. & Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 353, 172–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Boersema, P.J. et al. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol. Cell. Proteomics 9, 84–99 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, H. et al. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J. Proteome Res. 7, 3957–3967 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, F. et al. A fully automated system with online sample loading, isotope dimethyl labeling and multidimensional separation for high-throughput quantitative proteome analysis. Anal. Chem. 82, 3007–3015 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by funds from the China State Key Basic Research Program Grants (2012CB910101 and 2016YFA0501402 to M.Y. and 2013CB911202 to H.Z.), the National Natural Science Foundation of China (21235006, 21321064 and 21535008 to H.Z., and 81361128015 to M.Y. and S.S.-C.L.), the Canadian Cancer Society (to S.S.-C.L.), the Canadian Institute of Health Research (to S.S.-C.L. and M.Y.) and the Ontario Research Fund (to S.S.-C.L.). L.L. is a recipient of “Distinguished Expert of Overseas Tai Shan Scholar”. M.Y. is a recipient of the National Science Fund of China for Distinguished Young Scholars (21525524). S.S.-C.L. holds a Canadian Research Chair in Functional Genomics and Cellular Proteomics.

Author information

Authors and Affiliations

Authors

Contributions

S.S.-C.L., H.Z., M.Y. and M.D. conceived and designed the project. Y.B. and M.D. carried out the pTyr enrichment experiments and MS analysis under the supervision of H.Z., M.Y. and S.S.-C.L. L.L., M.Y., Y.B., M.D., K.C., T.K. and S.S.-C.L. analyzed the data. X.L., Y.W. and X.C. performed the cellular and biochemical experiments with input from S.S.-C.L. and D.L. C.V. and H.L. prepared the superbinder reagents. S.S.-C.L., L.L. and M.Y. wrote the manuscript with input from H.Z., M.D., Y.B. and D.L.

Corresponding authors

Correspondence to Mingliang Ye, Shawn S-C Li or Hanfa Zou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–19. (PDF 9135 kb)

Supplementary Dataset

Supplementary Datasets 1–8. (XLSX 41064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Li, L., Dong, M. et al. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nat Chem Biol 12, 959–966 (2016). https://doi.org/10.1038/nchembio.2178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2178

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research