Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast

Abstract

Whole-cell biocatalysts have proven a tractable path toward sustainable production of bulk and fine chemicals. Yet the screening of libraries of cellular designs to identify best-performing biocatalysts is most often a low-throughput endeavor. For this reason, the development of biosensors enabling real-time monitoring of production has attracted attention. Here we applied systematic engineering of multiple parameters to search for a general biosensor design in the budding yeast Saccharomyces cerevisiae based on small-molecule binding transcriptional activators from the prokaryote superfamily of LysR-type transcriptional regulators (LTTRs). We identified a design supporting LTTR-dependent activation of reporter gene expression in the presence of cognate small-molecule inducers. As proof of principle, we applied the biosensors for in vivo screening of cells producing naringenin or cis,cis-muconic acid at different levels, and found that reporter gene output correlated with production. The transplantation of prokaryotic transcriptional activators into the eukaryotic chassis illustrates the potential of a hitherto untapped biosensor resource useful for biotechnological applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engineering the CCM-responsive prokaryotic transcriptional activator BenM in yeast.
Figure 2: High-throughput engineering and screening of BenM variants with improved CCM inducibility.
Figure 3: Biosensor specificity and transcriptional orthogonality.
Figure 4: Application of transcriptional activators from the LTTR family as biosensors in yeast.
Figure 5: Biosensor sensitivity and operational range.
Figure 6: In vivo application of CCM and naringenin biosensors in yeast.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

References

  1. Jakočiūnas, T., Jensen, M.K. & Keasling, J.D. CRISPR/Cas9 advances engineering of microbial cell factories. Metab. Eng. 34, 44–59 (2016).

    PubMed  Google Scholar 

  2. Esvelt, K.M. & Wang, H.H. Genome-scale engineering for systems and synthetic biology. Mol. Syst. Biol. 9, 641 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  Google Scholar 

  4. Wang, B., Barahona, M. & Buck, M. Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities. Nucleic Acids Res. 43, 1955–1964 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Farzadfard, F. & Lu, T.K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Michener, J.K. & Smolke, C.D. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab. Eng. 14, 306–316 (2012).

    CAS  PubMed  Google Scholar 

  7. Raman, S., Rogers, J.K., Taylor, N.D. & Church, G.M. Evolution-guided optimization of biosynthetic pathways. Proc. Natl. Acad. Sci. USA 111, 17803–17808 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi, J.H. & Ostermeier, M. Rational design of a fusion protein to exhibit disulfide-mediated logic gate behavior. ACS Synth. Biol. 4, 400–406 (2015).

    CAS  PubMed  Google Scholar 

  9. Ausländer, S., Ausländer, D., Müller, M., Wieland, M. & Fussenegger, M. Programmable single-cell mammalian biocomputers. Nature 487, 123–127 (2012).

    PubMed  Google Scholar 

  10. Khalil, A.S. et al. A synthetic biology framework for programming eukaryotic transcription functions. Cell 150, 647–658 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Folcher, M., Xie, M., Spinnler, A. & Fussenegger, M. Synthetic mammalian trigger-controlled bipartite transcription factors. Nucleic Acids Res. 41, e134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stanton, B.C. et al. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat. Chem. Biol. 10, 99–105 (2014).

    CAS  PubMed  Google Scholar 

  13. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stanton, B.C. et al. Systematic transfer of prokaryotic sensors and circuits to mammalian cells. ACS Synth. Biol. 3, 880–891 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilbert, L.A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    CAS  PubMed  Google Scholar 

  17. Teo, W.S. & Chang, M.W. Bacterial XylRs and synthetic promoters function as genetically encoded xylose biosensors in Saccharomyces cerevisiae. Biotechnol. J. 10, 315–322 (2015).

    CAS  PubMed  Google Scholar 

  18. Lee, N., Francklyn, C. & Hamilton, E.P. Arabinose-induced binding of AraC protein to araI2 activates the araBAD operon promoter. Proc. Natl. Acad. Sci. USA 84, 8814–8818 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shadel, G.S. & Baldwin, T.O. The Vibrio fischeri LuxR protein is capable of bidirectional stimulation of transcription and both positive and negative regulation of the luxR gene. J. Bacteriol. 173, 568–574 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, D.J., Minchin, S.D. & Busby, S.J.W. Activating transcription in bacteria. Annu. Rev. Microbiol. 66, 125–152 (2012).

    CAS  PubMed  Google Scholar 

  21. Siedler, S., Stahlhut, S.G., Malla, S., Maury, J. & Neves, A.R. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metab. Eng. 21, 2–8 (2014).

    CAS  PubMed  Google Scholar 

  22. Maddocks, S.E. & Oyston, P.C.F. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154, 3609–3623 (2008).

    CAS  PubMed  Google Scholar 

  23. Collier, L.S., Gaines, G.L. III & Neidle, E.L. Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J. Bacteriol. 180, 2493–2501 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Suastegui, M. et al. Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar. Angew. Chem. 128, 2414–2419 (2016).

    Google Scholar 

  25. Curran, K.A., Leavitt, J.M., Karim, A.S. & Alper, H.S. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab. Eng. 15, 55–66 (2013).

    CAS  PubMed  Google Scholar 

  26. Bundy, B.M., Collier, L.S., Hoover, T.R. & Neidle, E.L. Synergistic transcriptional activation by one regulatory protein in response to two metabolites. Proc. Natl. Acad. Sci. USA 99, 7693–7698 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, M., Li, S. & Zhao, H. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. Biotechnol. Bioeng. 113, 206–215 (2016).

    PubMed  Google Scholar 

  28. Olesen, J., Hahn, S. & Guarente, L. Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner. Cell 51, 953–961 (1987).

    CAS  PubMed  Google Scholar 

  29. McIsaac, R.S., Gibney, P.A., Chandran, S.S., Benjamin, K.R. & Botstein, D. Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae. Nucleic Acids Res. 42, e48 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, W.Z. & Sherman, F. Two types of TATA elements for the CYC1 gene of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 666–676 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pfeifer, K., Arcangioli, B. & Guarente, L. Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene. Cell 49, 9–18 (1987).

    CAS  PubMed  Google Scholar 

  32. Lee, M.E., Aswani, A., Han, A.S., Tomlin, C.J. & Dueber, J.E. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res. 41, 10668–10678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng, H.L., Shiou, S.R. & Chang, H.Y. Characterization of mdcR, a regulatory gene of the malonate catabolic system in Klebsiella pneumoniae. J. Bacteriol. 181, 2302–2306 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. MacLean, A.M., MacPherson, G., Aneja, P. & Finan, T.M. Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti. Appl. Environ. Microbiol. 72, 5403–5413 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Laishram, R.S. & Gowrishankar, J. Environmental regulation operating at the promoter clearance step of bacterial transcription. Genes Dev. 21, 1258–1272 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Maclean, A.M., Haerty, W., Golding, G.B. & Finan, T.M. The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti. Microbiology 157, 2522–2533 (2011).

    CAS  PubMed  Google Scholar 

  37. Chen, W.N. & Tan, K.Y. “Malonate uptake and metabolism in Saccharomyces cerevisiae”. Appl. Biochem. Biotechnol. 171, 44–62 (2013).

    CAS  PubMed  Google Scholar 

  38. Opekarová, M. & Kubín, J. On the unidirectionality of arginine uptake in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 152, 261–267 (1997).

    PubMed  Google Scholar 

  39. Rogers, J.K. & Church, G.M. Genetically encoded sensors enable real-time observation of metabolite production. Proc. Natl. Acad. Sci. USA 113, 2388–2393 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rikhvanov, E.G., Varakina, N.N., Rusaleva, T.M., Rachenko, E.I. & Voǐnikov, V.K. [The effect of sodium malonate on yeast thermotolerance]. Mikrobiologiia 72, 616–620 (2003).

    CAS  PubMed  Google Scholar 

  41. Koopman, F. et al. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 11, 155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485–493 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Naesby, M. et al. Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae. Microb. Cell Fact. 8, 45 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Gupta, R.K., Patterson, S.S., Ripp, S., Simpson, M.L. & Sayler, G.S. Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Res. 4, 305–313 (2003).

    CAS  PubMed  Google Scholar 

  45. Galloway, K.E., Franco, E. & Smolke, C.D. Dynamically reshaping signaling networks to program cell fate via genetic controllers. Science 341, 1235005 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Kim, T., Folcher, M., Doaud-El Baba, M. & Fussenegger, M. A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection. Angew. Chem. Int. Edn Engl. 54, 5933–5938 (2015).

    CAS  Google Scholar 

  47. Zhang, H., Li, Z., Pereira, B. & Stephanopoulos, G. Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol. Microb. Cell Fact. 14, 134 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jensen, N.B. et al. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 238–248 (2014).

    CAS  PubMed  Google Scholar 

  50. Gietz, R.D. & Schiestl, R.H. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 38–41 (2007).

    CAS  PubMed  Google Scholar 

  51. Eckert-Boulet, N., Pedersen, M.L., Krogh, B.O. & Lisby, M. Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae. Yeast 29, 323–334 (2012).

    CAS  PubMed  Google Scholar 

  52. Mikkelsen, M.D. et al. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab. Eng. 14, 104–111 (2012).

    CAS  PubMed  Google Scholar 

  53. Kildegaard, K.R. et al. Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metab. Eng. 26, 57–66 (2014).

    CAS  PubMed  Google Scholar 

  54. Pettersen, E.F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Novo Nordisk Foundation and by the European Union Seventh Framework Programme (FP7-KBBE-2013-7-single-stage) under grant agreement no. 613745, Promys (M.E. & S.S.). We acknowledge A. Koza and E. Özdemir for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.L.S., T.S., J.D.K. and M.K.J. conceived this project. M.L.S., T.S. and M.K.J. designed all of the experiments. M.L.S., T.S. and D.A. performed all flow cytometry analyses. M.L.S., T.S., D.A., B.J.L., J.Z., K.R.K., S.S., T.J.G. and M.E. constructed all strains and plasmids. M.K. and K.R.K. performed all analytical measurements, and M.K.J. performed the RNA-seq experiment. M.L.S., T.S., M.K.J., I.B., A.S.R. and K.R.K. analyzed the data. M.K.J. wrote the paper.

Corresponding author

Correspondence to Michael K Jensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–7 and Supplementary Tables 1–5. (PDF 2914 kb)

Supplementary Dataset 1

RNA-seq gene list. (XLSX 947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skjoedt, M., Snoek, T., Kildegaard, K. et al. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat Chem Biol 12, 951–958 (2016). https://doi.org/10.1038/nchembio.2177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2177

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research