Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase

Abstract

The prototypical second messenger cAMP regulates a wide variety of physiological processes. It can simultaneously mediate diverse functions by acting locally in independently regulated microdomains. In mammalian cells, two types of adenylyl cyclase generate cAMP: G-protein-regulated transmembrane adenylyl cyclases and bicarbonate-, calcium- and ATP-regulated soluble adenylyl cyclase (sAC). Because each type of cyclase regulates distinct microdomains, methods to distinguish between them are needed to understand cAMP signaling. We developed a mass-spectrometry-based adenylyl cyclase assay, which we used to identify a new sAC-specific inhibitor, LRE1. LRE1 bound to the bicarbonate activator binding site and inhibited sAC via a unique allosteric mechanism. LRE1 prevented sAC-dependent processes in cellular and physiological systems, and it will facilitate exploration of the therapeutic potential of sAC inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Validation of RF-MSS cyclase assay and high-throughput screening conditions.
Figure 2: LRE1 potently and selectively inhibited sAC in vitro and in cells.
Figure 3: Crystal structure of sAC−LRE1 complex.
Figure 4: Mechanistic characterization of sAC inhibition by LRE1.
Figure 5: LRE1 inhibited sAC-dependent processes in sperm and mitochondria.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lefkimmiatis, K. & Zaccolo, M. cAMP signaling in subcellular compartments. Pharmacol. Ther. 143, 295–304 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Steegborn, C. Structure, mechanism, and regulation of soluble adenylyl cyclases - similarities and differences to transmembrane adenylyl cyclases. Biochim. Biophys. Acta 1842 12 Pt B: 2535–2547 (2014).

    CAS  PubMed  Google Scholar 

  3. Levin, L.R. & Buck, J. Physiological roles of acid-base sensors. Annu. Rev. Physiol. 77, 347–362 (2015).

    CAS  PubMed  Google Scholar 

  4. Desman, G., Waintraub, C. & Zippin, J.H. Investigation of cAMP microdomains as a path to novel cancer diagnostics. Biochim. Biophys. Acta 1842 12 Pt B: 2636–2645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Buck, J., Sinclair, M.L., Schapal, L., Cann, M.J. & Levin, L.R. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc. Natl. Acad. Sci. USA 96, 79–84 (1999).

    CAS  PubMed  Google Scholar 

  6. Chen, Y. et al. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289, 625–628 (2000).

    CAS  PubMed  Google Scholar 

  7. Kleinboelting, S. et al. Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate. Proc. Natl. Acad. Sci. USA 111, 3727–3732 (2014).

    CAS  PubMed  Google Scholar 

  8. Jaiswal, B.S. & Conti, M. Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa. Proc. Natl. Acad. Sci. USA 100, 10676–10681 (2003).

    CAS  PubMed  Google Scholar 

  9. Litvin, T.N., Kamenetsky, M., Zarifyan, A., Buck, J. & Levin, L.R. Kinetic properties of “soluble” adenylyl cyclase. Synergism between calcium and bicarbonate. J. Biol. Chem. 278, 15922–15926 (2003).

    CAS  PubMed  Google Scholar 

  10. Zippin, J.H. et al. CO2/HCO3(-)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J. Biol. Chem. 288, 33283–33291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tresguerres, M., Buck, J. & Levin, L.R. Physiological carbon dioxide, bicarbonate, and pH sensing. Pflugers Arch. 460, 953–964 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Esposito, G. et al. Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc. Natl. Acad. Sci. USA 101, 2993–2998 (2004).

    CAS  PubMed  Google Scholar 

  13. Hess, K.C. et al. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev. Cell 9, 249–259 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, X. et al. A soluble adenylyl cyclase form targets to axonemes and rescues beat regulation in soluble adenylyl cyclase knockout mice. Am. J. Respir. Cell Mol. Biol. 51, 750–760 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Schmid, A. et al. Soluble adenylyl cyclase is localized to cilia and contributes to ciliary beat frequency regulation via production of cAMP. J. Gen. Physiol. 130, 99–109 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pastor-Soler, N. et al. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J. Biol. Chem. 278, 49523–49529 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Acin-Perez, R. et al. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab. 9, 265–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Appukuttan, A. et al. Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion. Cardiovasc. Res. 93, 340–349 (2012).

    CAS  PubMed  Google Scholar 

  19. Flacke, J.P. et al. Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells. J. Biol. Chem. 288, 3126–3135 (2013).

    CAS  PubMed  Google Scholar 

  20. Kumar, S., Kostin, S., Flacke, J.P., Reusch, H.P. & Ladilov, Y. Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells. J. Biol. Chem. 284, 14760–14768 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi, H.B. et al. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75, 1094–1104 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, Y.S. et al. Regulation of anterior chamber drainage by bicarbonate-sensitive soluble adenylyl cyclase in the ciliary body. J. Biol. Chem. 286, 41353–41358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, J., Martinez, J., Milner, T.A., Buck, J. & Levin, L.R. Neuronal expression of soluble adenylyl cyclase in the mammalian brain. Brain Res. 1518, 1–8 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramos, L.S., Zippin, J.H., Kamenetsky, M., Buck, J. & Levin, L.R. Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells. J. Gen. Physiol. 132, 329–338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stessin, A.M. et al. Soluble adenylyl cyclase mediates nerve growth factor-induced activation of Rap1. J. Biol. Chem. 281, 17253–17258 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu, K.Y. et al. Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones. Nat. Neurosci. 9, 1257–1264 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bitterman, J.L., Ramos-Espiritu, L., Diaz, A., Levin, L.R. & Buck, J. Pharmacological distinction between soluble and transmembrane adenylyl cyclases. J. Pharmacol. Exp. Ther. 347, 589–598 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Braun, T. Inhibition of the soluble form of testis adenylate cyclase by catechol estrogens and other catechols. Proc. Soc. Exp. Biol. Med. 194, 58–63 (1990).

    CAS  PubMed  Google Scholar 

  29. Steegborn, C. et al. A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen. J. Biol. Chem. 280, 31754–31759 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Benedetto, G., Scalzotto, E., Mongillo, M. & Pozzan, T. Mitochondrial Ca2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 17, 965–975 (2013).

    CAS  PubMed  Google Scholar 

  31. Tian, G., Sandler, S., Gylfe, E. & Tengholm, A. Glucose- and hormone-induced cAMP oscillations in α- and β-cells within intact pancreatic islets. Diabetes 60, 1535–1543 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Salomon, Y. Adenylate cyclase assay. Adv. Cycl. Nucleot. Res. 10, 35–55 (1979).

    CAS  Google Scholar 

  33. Cooper, D.M.F., Mons, N. & Karpen, J.W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374, 421–424 (1995).

    CAS  PubMed  Google Scholar 

  34. Merglen, A. et al. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145, 667–678 (2004).

    CAS  PubMed  Google Scholar 

  35. Buffone, M.G., Wertheimer, E.V., Visconti, P.E. & Krapf, D. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim. Biophys. Acta 1842 12 Pt B: 2610–2620 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie, F. et al. Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev. Biol. 296, 353–362 (2006).

    CAS  PubMed  Google Scholar 

  37. Visconti, P.E. et al. Cholesterol efflux-mediated signal transduction in mammalian sperm. beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J. Biol. Chem. 274, 3235–3242 (1999).

    CAS  PubMed  Google Scholar 

  38. Visconti, P.E. et al. Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev. Biol. 214, 429–443 (1999).

    CAS  PubMed  Google Scholar 

  39. Valsecchi, F., Konrad, C. & Manfredi, G. Role of soluble adenylyl cyclase in mitochondria. Biochim. Biophys. Acta 1842 12 Pt B: 2555–2560 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. De Rasmo, D. et al. Intramitochondrial adenylyl cyclase controls the turnover of nuclear-encoded subunits and activity of mammalian complex I of the respiratory chain. Biochim. Biophys. Acta 1853, 183–191 (2015).

    CAS  PubMed  Google Scholar 

  41. Acin-Perez, R., Gatti, D.L., Bai, Y. & Manfredi, G. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab. 13, 712–719 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Conley, J.M. et al. Development of a high-throughput screening paradigm for the discovery of small-molecule modulators of adenylyl cyclase: identification of an adenylyl cyclase 2 inhibitor. J. Pharmacol. Exp. Ther. 347, 276–287 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tesmer, J.J., Sunahara, R.K., Gilman, A.G. & Sprang, S.R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278, 1907–1916 (1997).

    CAS  PubMed  Google Scholar 

  44. Saalau-Bethell, S.M. et al. Crystal structure of human soluble adenylate cyclase reveals a distinct, highly flexible allosteric bicarbonate binding pocket. ChemMedChem 9, 823–832 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kleinboelting, S. et al. Bithionol potently inhibits human soluble adenylyl cyclase through binding to the allosteric activator site. J. Biol. Chem. 291, 9776–9784 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Levin, L.R. et al. The Drosophila learning and memory gene rutabaga encodes a Ca2+/Calmodulin-responsive adenylyl cyclase. Cell 68, 479–489 (1992).

    CAS  PubMed  Google Scholar 

  47. Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S. & Hopkins, A.L. Quantifying the chemical beauty of drugs. Nat. Chem. 4, 90–98 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kleinboelting, S. et al. Expression, purification, crystallization and preliminary X-ray diffraction analysis of a mammalian type 10 adenylyl cyclase. Acta Crystallogr. F Struct. Biol. Commun. 70, 467–469 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mueller, U. et al. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J. Synchrotron Radiat. 19, 442–449 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Krug, M., Weiss, M.S., Heinemann, U. & Mueller, U. XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Cryst. 45, 568–572 (2012).

    CAS  Google Scholar 

  51. Diederichs, K. & Karplus, P.A. Better models by discarding data? Acta Crystallogr. D Biol. Crystallogr. 69, 1215–1222 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Navarrete, F.A. et al. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J. Cell. Physiol. 230, 1758–1769 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Birch-Machin, M.A. & Turnbull, D.M. Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues. Methods Cell Biol. 65, 97–117 (2001).

    CAS  PubMed  Google Scholar 

  54. Sims, N.R. Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J. Neurochem. 55, 698–707 (1990).

    CAS  PubMed  Google Scholar 

  55. Akerman, K.E. & Wikström, M.K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 68, 191–197 (1976).

    CAS  PubMed  Google Scholar 

  56. Figueira, T.R., Melo, D.R., Vercesi, A.E. & Castilho, R.F. Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Methods Mol. Biol. 810, 103–117 (2012).

    CAS  PubMed  Google Scholar 

  57. Zanotti, A. & Azzone, G.F. Safranine as membrane potential probe in rat liver mitochondria. Arch. Biochem. Biophys. 201, 255–265 (1980).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Warren and The Milstein Synthetic Chemistry Core Facility at Weill Cornell Medical College, and S.S. Gross and Q. Chen. C.S. and S.K. thank the Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY) staff and the Helmholtz Protein Sample Production Facility (PSPF) for technical assistance. L.R.-E. and J.F.G. thank the High-Throughput and Spectroscopy Resource Center staff, the Helmsley Trust for funding the rapid-fire automated solid phase extraction time of flight mass spectrometry instrument, and Agilent staff, especially P. Rye and L. Frick, for technical assistance. This work was supported, in whole or in part, by US National Institutes of Health (NIH) grants GM107442 and EY025810 and by the Weill Cornell Medicine Clinical and Translational Sciences Center, NIH National Center for Advancing Translational Sciences grant UL1TR00457 (to L.R.L. and J.B.); NIH grants HD38082 and HD44044 (to P.E.V.), R01GM088999 (to G.M.), and K08 CA160657 (to J.H.Z.); Melanoma Research Alliance Team Science and Clinique Clinical Scholars Awards (to J.H.Z.); and Deutsche Forschungsgemeinschaft grant STE1701/11 (to C.S.).

Author information

Authors and Affiliations

Authors

Contributions

L.R.-E., S.K., C.S., J.F.G., L.R.L. and J.B. designed the research project and analyzed data; L.R.-E. and C.A. performed the high-throughput screening; S.K. and C.S. solved the crystal structure; J.v.d.H. expressed protein; L.R.-E. performed the kinetic and cellular inhibition studies; H.B. performed the assays of individual tmACs; F.A.N., A.A., and P.E.V. performed the sperm studies; F.V., A.S., and G.M. performed the mitochondrial studies; and L.R.-E. and J.H.Z. performed the cytotoxicity studies. All authors contributed specific parts of the manuscript, with L.R.-E., L.R.L. and J.B. assuming responsibility for the manuscript in its entirety.

Corresponding author

Correspondence to Lonny R Levin.

Ethics declarations

Competing interests

J.B., L.R.L. and J.H.Z. have equity interest in CEP Biotech, which has licensed commercialization of a panel of monoclonal antibodies directed against sAC.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–9. (PDF 1608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Espiritu, L., Kleinboelting, S., Navarrete, F. et al. Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase. Nat Chem Biol 12, 838–844 (2016). https://doi.org/10.1038/nchembio.2151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing