Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A hybrid polyketide–nonribosomal peptide in nematodes that promotes larval survival

Abstract

Polyketides and nonribosomal peptides are two important types of natural products that are produced by many species of bacteria and fungi but are exceedingly rare in metazoans. Here, we elucidate the structure of a hybrid polyketide–nonribosomal peptide from Caenorhabditis elegans that is produced in the canal-associated neurons (CANs) and promotes survival during starvation-induced larval arrest. Our results uncover a novel mechanism by which animals respond to nutrient fluctuations to extend survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery and biosynthesis of the nemamides.
Figure 2: Site of expression and biological role of the nemamides.

Similar content being viewed by others

References

  1. Ōmura, S. & Crump, A. Trends Parasitol. 30, 445–455 (2014).

    Article  Google Scholar 

  2. Fischbach, M.A. & Walsh, C.T. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  Google Scholar 

  3. Castoe, T.A., Stephens, T., Noonan, B.P. & Calestani, C. Gene 392, 47–58 (2007).

    Article  CAS  Google Scholar 

  4. Hojo, M. et al. Zoological Lett. 1, 3 (2015).

    Article  Google Scholar 

  5. O'Brien, R.V., Davis, R.W., Khosla, C. & Hillenmeyer, M.E. J. Antibiot. (Tokyo) 67, 89–97 (2014).

    Article  CAS  Google Scholar 

  6. Wang, H., Fewer, D.P., Holm, L., Rouhiainen, L. & Sivonen, K. Proc. Natl. Acad. Sci. USA 111, 9259–9264 (2014).

    Article  CAS  Google Scholar 

  7. Gowda, H. et al. Anal. Chem. 86, 6931–6939 (2014).

    Article  CAS  Google Scholar 

  8. Nass, R. & Hamza, I. Curr. Prot. Toxicol. 31, 1.9.1–1.9.18 (2007).

  9. Bhushan, R. & Brückner, H. Amino Acids 27, 231–247 (2004).

    Article  CAS  Google Scholar 

  10. Kwan, D.H. & Schulz, F. Molecules 16, 6092–6115 (2011).

    Article  CAS  Google Scholar 

  11. Aron, Z.D., Dorrestein, P.C., Blackhall, J.R., Kelleher, N.L. & Walsh, C.T. J. Am. Chem. Soc. 127, 14986–14987 (2005).

    Article  CAS  Google Scholar 

  12. Röttig, M. et al. Nucleic Acids Res. 39, W362–W367 (2011).

    Article  Google Scholar 

  13. Du, L. & Lou, L. Nat. Prod. Rep. 27, 255–278 (2010).

    Article  CAS  Google Scholar 

  14. Forrester, W.C., Perens, E., Zallen, J.A. & Garriga, G. Genetics 148, 151–165 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Baugh, L.R. Genetics 194, 539–555 (2013).

    Article  CAS  Google Scholar 

  16. Fukuyama, M., Kontani, K., Katada, T. & Rougvie, A.E. Curr. Biol. 25, 1241–1248 (2015).

    Article  CAS  Google Scholar 

  17. Lee, B.H. & Ashrafi, K. PLoS Genet. 4, e1000213 (2008).

    Article  Google Scholar 

  18. Chen, Y. & Baugh, L.R. Dev. Biol. 394, 314–326 (2014).

    Article  CAS  Google Scholar 

  19. Artyukhin, A.B., Schroeder, F.C. & Avery, L. Sci. Rep. 3, 2777 (2013).

    Article  Google Scholar 

  20. Frand, A.R., Russel, S. & Ruvkun, G. PLoS Biol. 3, e312 (2005).

    Article  Google Scholar 

  21. Baugh, L.R. & Sternberg, P.W. Curr. Biol. 16, 780–785 (2006).

    Article  CAS  Google Scholar 

  22. Ramaswamy, V. et al. J. Magn. Reson. 235, 58–65 (2013).

    Article  CAS  Google Scholar 

  23. Chambers, M.C. et al. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  Google Scholar 

  24. Modzelewska, K. et al. PLoS Biol. 11, e1001465 (2013).

    Article  CAS  Google Scholar 

  25. Butcher, R.A., Fujita, M., Schroeder, F.C. & Clardy, J. Nat. Chem. Biol. 3, 420–422 (2007).

    Article  CAS  Google Scholar 

  26. Zhang, X. et al. Proc. Natl. Acad. Sci. USA 112, 3955–3960 (2015).

    Article  CAS  Google Scholar 

  27. Ritter, A.D. et al. Genome Res. 23, 954–965 (2013).

    Article  CAS  Google Scholar 

  28. Livak, K.J. & Schmittgen, T.D. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

  29. Zhang, X., Zabinsky, R., Teng, Y., Cui, M. & Han, M. Proc. Natl. Acad. Sci. USA 108, 17997–18002 (2011).

    Article  CAS  Google Scholar 

  30. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. Mol. Biol. Evol. 30, 2725–2729 (2013).

    Article  CAS  Google Scholar 

  31. Weber, T. et al. Nucleic Acids Res. 43, W1, W237–W243 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Fire, A. Frand, N. Moghal and P. Sengupta for plasmids, J. Rocca for help with NMR acquisition, J. Johnson for MS–MS analysis, Y. Ding and Y. Zhang for help with Sybyl software, S. Hagan, G. Fanucci, and Z. Liu for help with CD spectroscopy, and Y. Zhu for help with calculating CD spectra. We acknowledge the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440), and the NemaGENETAG consortium for providing strains. This work was supported by funds to R.A.B. from the NIH (GM118775), the NSF (1555050), the Ellison Medical Foundation (AG-NS-0963-12), the Alfred P. Sloan Foundation (BR2014-071), and the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-1157490 and the State of Florida.

Author information

Authors and Affiliations

Authors

Contributions

Q.S. purified and structurally characterized the nemamides. L.F. generated transgenic worm strains and performed biological assays. Y.L. performed metabolomic analyses. J.H. generated extracts. J.K.N. analyzed nemamide stability. Q.S., L.F., Y.L., D.H.P., and R.A.B. analyzed the data. R.A.B., Q.S., and L.F. wrote the manuscript.

Corresponding author

Correspondence to Rebecca A Butcher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–28 and Supplementary Tables 1–5 (PDF 8971 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shou, Q., Feng, L., Long, Y. et al. A hybrid polyketide–nonribosomal peptide in nematodes that promotes larval survival. Nat Chem Biol 12, 770–772 (2016). https://doi.org/10.1038/nchembio.2144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2144

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research