Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of protein phosphorylation with a genetically encoded photocaged amino acid

Abstract

We genetically encoded the photocaged amino acid 4,5-dimethoxy-2-nitrobenzylserine (DMNB-Ser, 1) in Saccharomyces cerevisiae in response to the amber nonsense codon TAG. This amino acid was converted to serine in living cells by irradiation with relatively low-energy blue light and was used to noninvasively photoactivate phosphorylation of the transcription factor Pho4, which controls the cellular response to inorganic phosphate1. When substituted at phosphoserine sites that control nuclear export of Pho4, 1 blocks phosphorylation and subsequent export by the receptor Msn5 (ref. 2). We triggered phosphorylation of individual serine residues with a visible laser pulse and monitored nuclear export of Pho4-GFP fusion constructs in real time. We observed distinct export kinetics for differentially phosphorylated Pho4 mutants, which demonstrates dynamic regulation of Pho4 function. This methodology should also facilitate the analysis of other cellular processes involving free serine residues, including catalysis, biomolecular recognition and ion transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Incorporation of 1 into hSOD-33TAG and Pho4 phosphorylation scheme.
Figure 2: In vivo photolysis of the DMNB-Ser Pho4-GFP mutants.
Figure 3: Real-time analysis of in vivo photolysis of DMNB-Ser Pho4-GFP mutants.

Similar content being viewed by others

References

  1. O'Neill, E.M., Kaffman, A., Jolly, E.R. & O'Shea, E.K. Regulation of PHO4 nuclear localization by the PHO80–PHO85 cyclin-CDK complex. Science 271, 209–212 (1996).

    Article  CAS  Google Scholar 

  2. Kaffman, A., Rank, N.M., O'Neill, E.M., Huang, L.S. & O'Shea, E.K. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396, 482–486 (1998).

    Article  CAS  Google Scholar 

  3. Pelliccioli, A.P. & Wirz, J. Photoremovable protecting groups: reaction mechanisms and applications. Photochem. Photobiol. Sci. 1, 441–458 (2002).

    Article  Google Scholar 

  4. Mayer, G. & Heckel, A. Biologically active molecules with a “light switch”. Angew. Chem. Int. Edn Engl. 45, 4900–4921 (2006).

    Article  CAS  Google Scholar 

  5. Lawrence, D.S. The preparation and in vivo applications of caged peptides and proteins. Curr. Opin. Chem. Biol. 9, 570–575 (2005).

    Article  CAS  Google Scholar 

  6. Rothman, D.M., Shults, M.D. & Imperiali, B. Chemical approaches for investigating phosphorylation in signal transduction networks. Trends Cell Biol. 15, 502–510 (2005).

    Article  CAS  Google Scholar 

  7. Ghosh, M., Ichetovkin, I., Song, X., Condeelis, J.S. & Lawrence, D.S. A new strategy for caging proteins regulated by kinases. J. Am. Chem. Soc. 124, 2440–2441 (2002).

    Article  CAS  Google Scholar 

  8. Zou, K., Cheley, S., Givens, R.S. & Bayley, H. Catalytic subunit of protein kinase A caged at the activating phosphothreonine. J. Am. Chem. Soc. 124, 8220–8229 (2002).

    Article  CAS  Google Scholar 

  9. Endo, M., Nakayama, K., Kaida, Y. & Majima, T. Design and synthesis of photochemically controllable caspase-3. Angew. Chem. Int. Edn. Engl. 43, 5643–5645 (2004).

    Article  CAS  Google Scholar 

  10. Hahn, M.E. & Muir, T.W. Photocontrol of Smad2, a multiphosphorylated cell-signaling protein, through caging of activating phosphoserines. Angew. Chem. Int. Edn. Engl. 43, 5800–5803 (2004).

    Article  CAS  Google Scholar 

  11. England, P.M., Lester, H.A., Davidson, N. & Dougherty, D.A. Site-specific, photochemical proteolysis applied to ion channels in vivo. Proc. Natl. Acad. Sci. USA 94, 11025–11030 (1997).

    Article  CAS  Google Scholar 

  12. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    Article  CAS  Google Scholar 

  13. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article  CAS  Google Scholar 

  14. Deiters, A., Groff, D., Ryu, Y., Xie, J. & Schultz, P.G. A genetically encoded photocaged tyrosine. Angew. Chem. Int. Edn Engl. 45, 2728–2731 (2006).

    Article  CAS  Google Scholar 

  15. Wu, N., Deiters, A., Cropp, T.A., King, D. & Schultz, P.G. A genetically encoded photocaged amino acid. J. Am. Chem. Soc. 126, 14306–14307 (2004).

    Article  CAS  Google Scholar 

  16. Walker, J.W., Martin, H., Schmitt, F.R. & Barsotti, R.J. Rapid release of an alpha-adrenergic receptor ligand from photolabile analogues. Biochemistry 32, 1338–1345 (1993).

    Article  CAS  Google Scholar 

  17. Cusack, S., Yaremchuk, A. & Tukalo, M. The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 19, 2351–2361 (2000).

    Article  CAS  Google Scholar 

  18. Summerer, D. et al. A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. USA 103, 9785–9789 (2006).

    Article  CAS  Google Scholar 

  19. Xie, J. & Schultz, P.G. A chemical toolkit for proteins–an expanded genetic code. Nat. Rev. Mol. Cell Biol. 7, 775–782 (2006).

    Article  CAS  Google Scholar 

  20. Mursinna, R.S. & Martinis, S.A. Rational design to block amino acid editing of a tRNA synthetase. J. Am. Chem. Soc. 124, 7286–7287 (2002).

    Article  CAS  Google Scholar 

  21. Lincecum, T.L., Jr. et al. Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol. Cell 11, 951–963 (2003).

    Article  CAS  Google Scholar 

  22. Oshima, Y. The phosphatase system in Saccharomyces cerevisiae. Genes Genet. Syst. 72, 323–334 (1997).

    Article  CAS  Google Scholar 

  23. Komeili, A. & O'Shea, E.K. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284, 977–980 (1999).

    Article  CAS  Google Scholar 

  24. Jeffery, D.A., Springer, M., King, D.S. & O'Shea, E.K. Multi-site phosphorylation of Pho4 by the cyclin-CDK Pho80-Pho85 is semi-processive with site preference. J. Mol. Biol. 306, 997–1010 (2001).

    Article  CAS  Google Scholar 

  25. Springer, M., Wykoff, D.D., Miller, N. & O'Shea, E.K. Partially phosphorylated Pho4 activates transcription of a subset of phosphate-responsive genes. PLoS Biol. 1, E28 (2003).

    Article  Google Scholar 

  26. Kaffman, A., Rank, N.M. & O'Shea, E.K. Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Pse1/Kap121. Genes Dev. 12, 2673–2683 (1998).

    Article  CAS  Google Scholar 

  27. Olivo-Marin, J.C. Extraction of spots in biological images using multiscale products. Pattern Recognit. 35, 1989–1996 (2002).

    Article  Google Scholar 

  28. Thomson, D.J. & Chave, A.D. in Advances in Spectrum Estimation (ed. Haykin, S.) 58–113 (Prentice Hall, Englewood Cliffs, New Jersey, USA, 1991).

    Google Scholar 

  29. Veldhuyzen, W.F., Nguyen, Q., McMaster, G. & Lawrence, D.S.A. Light-activated probe of intracellular protein kinase activity. J. Am. Chem. Soc. 125, 13358–13359 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. O'Shea (Howard Hughes Medical Institute, Harvard University) for the PRS-Pho4WT-GFP plasmid, the mass spectrometry facility of the Genomics Institute of the Novartis Research Foundation for protein mass measurements and E. Peters for helpful discussions. E.A.L. and D.S. acknowledge a postdoctoral scholarship from the Alexander von Humboldt Foundation. This work was also supported by the US Department of Energy (DE-FG03-00ER46051) and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Contributions

E.A.L. designed experiments, performed biological experiments, imaging and data analysis, and wrote the manuscript; D.S. designed experiments, evolved the synthetase, performed biological experiments and wrote the manuscript; B.H.G. and S.M.B. provided mass spectrometric analysis; B.H.G. assisted in editing the manuscript; P.G.S. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Peter G Schultz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemke, E., Summerer, D., Geierstanger, B. et al. Control of protein phosphorylation with a genetically encoded photocaged amino acid. Nat Chem Biol 3, 769–772 (2007). https://doi.org/10.1038/nchembio.2007.44

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2007.44

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing