Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric regulation of G protein–coupled receptor activity by phospholipids

Abstract

Lipids are emerging as key regulators of membrane protein structure and activity. These effects can be attributed either to the modification of bilayer properties (thickness, curvature and surface tension) or to the binding of specific lipids to the protein surface. For G protein–coupled receptors (GPCRs), the effects of phospholipids on receptor structure and activity remain poorly understood. Here we reconstituted purified β2-adrenergic receptor (β2R) in high-density lipoparticles to systematically characterize the effect of biologically relevant phospholipids on receptor activity. We observed that the lipid headgroup type affected ligand binding (agonist and antagonist) and receptor activation. Specifically, phosphatidylgycerol markedly favored agonist binding and facilitated receptor activation, whereas phosphatidylethanolamine favored antagonist binding and stabilized the inactive state of the receptor. We then showed that these effects could be recapitulated with detergent-solubilized lipids, demonstrating that the functional modulation occurred in the absence of a bilayer. Our data suggest that phospholipids act as direct allosteric modulators of GPCR activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipids modulate ligand affinity of β2R.
Figure 2: β2R activation is regulated by phospholipids.
Figure 3: Modulation of β2R function by lipids does not require a bilayer.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lee, A.G. Biological membranes: the importance of molecular detail. Trends Biochem. Sci. 36, 493–500 (2011).

    Article  CAS  Google Scholar 

  2. Gourdon, P. et al. HiLiDe: systematic approach to membrane protein crystallization in lipid and detergent. Cryst. Growth Des. 11, 2098–2106 (2011).

    Article  CAS  Google Scholar 

  3. Lee, A.G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87 (2004).

    Article  CAS  Google Scholar 

  4. Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014).

    Article  CAS  Google Scholar 

  5. Hunte, C. & Richers, S. Lipids and membrane protein structures. Curr. Opin. Struct. Biol. 18, 406–411 (2008).

    Article  CAS  Google Scholar 

  6. Koshy, C. et al. Structural evidence for functional lipid interactions in the betaine transporter BetP. EMBO J. 32, 3096–3105 (2013).

    Article  CAS  Google Scholar 

  7. Long, S.B., Tao, X., Campbell, E.B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  Google Scholar 

  8. Guan, L., Smirnova, I.N., Verner, G., Nagamori, S. & Kaback, H.R. Manipulating phospholipids for crystallization of a membrane transport protein. Proc. Natl. Acad. Sci. USA 103, 1723–1726 (2006).

    Article  CAS  Google Scholar 

  9. Oates, J. & Watts, A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr. Opin. Struct. Biol. 21, 802–807 (2011).

    Article  CAS  Google Scholar 

  10. Ostrom, R.S. & Insel, P.A. The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br. J. Pharmacol. 143, 235–245 (2004).

    Article  CAS  Google Scholar 

  11. Huang, P. et al. Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem. Pharmacol. 73, 534–549 (2007).

    Article  CAS  Google Scholar 

  12. Albert, A.D., Young, J.E. & Yeagle, P.L. Rhodopsin-cholesterol interactions in bovine rod outer segment disk membranes. Biochim. Biophys. Acta 1285, 47–55 (1996).

    Article  Google Scholar 

  13. Gimpl, G. & Fahrenholz, F. Cholesterol as stabilizer of the oxytocin receptor. Biochim. Biophys. Acta 1564, 384–392 (2002).

    Article  CAS  Google Scholar 

  14. Pucadyil, T.J. & Chattopadhyay, A. Cholesterol modulates ligand binding and G-protein coupling to serotonin(1A) receptors from bovine hippocampus. Biochim. Biophys. Acta 1663, 188–200 (2004).

    Article  CAS  Google Scholar 

  15. Oates, J. et al. The role of cholesterol on the activity and stability of neurotensin receptor 1. Biochim. Biophys. Acta 1818, 2228–2233 (2012).

    Article  CAS  Google Scholar 

  16. Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  Google Scholar 

  17. Hanson, M.A. et al. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16, 897–905 (2008).

    Article  CAS  Google Scholar 

  18. Mitchell, D.C., Straume, M., Miller, J.L. & Litman, B.J. Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29, 9143–9149 (1990).

    Article  CAS  Google Scholar 

  19. Botelho, A.V., Huber, T., Sakmar, T.P. & Brown, M.F. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys. J. 91, 4464–4477 (2006).

    Article  CAS  Google Scholar 

  20. Botelho, A.V., Gibson, N.J., Thurmond, R.L., Wang, Y. & Brown, M.F. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Biochemistry 41, 6354–6368 (2002).

    Article  CAS  Google Scholar 

  21. Brown, M.F. Curvature forces in membrane lipid-protein interactions. Biochemistry 51, 9782–9795 (2012).

    Article  CAS  Google Scholar 

  22. Soubias, O., Teague, W.E. Jr., Hines, K.G., Mitchell, D.C. & Gawrisch, K. Contribution of membrane elastic energy to rhodopsin function. Biophys. J. 99, 817–824 (2010).

    Article  CAS  Google Scholar 

  23. Soubias, O., Teague, W.E. & Gawrisch, K. Evidence for specificity in lipid-rhodopsin interactions. J. Biol. Chem. 281, 33233–33241 (2006).

    Article  CAS  Google Scholar 

  24. Jastrzebska, B., Goc, A., Golczak, M. & Palczewski, K. Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex. Biochemistry 48, 5159–5170 (2009).

    Article  CAS  Google Scholar 

  25. Inagaki, S. et al. Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid. J. Mol. Biol. 417, 95–111 (2012).

    Article  CAS  Google Scholar 

  26. Whorton, M.R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl. Acad. Sci. USA 104, 7682–7687 (2007).

    Article  CAS  Google Scholar 

  27. Rasmussen, S.G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  Google Scholar 

  28. Yao, X.J. et al. The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. Proc. Natl. Acad. Sci. USA 106, 9501–9506 (2009).

    Article  CAS  Google Scholar 

  29. Rasmussen, S.G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  Google Scholar 

  30. Schuler, M.A., Denisov, I.G. & Sligar, S.G. Nanodiscs as a new tool to examine lipid-protein interactions. Methods Mol. Biol. 974, 415–433 (2013).

    Article  CAS  Google Scholar 

  31. Nygaard, R. et al. The dynamic process of β(2)-adrenergic receptor activation. Cell 152, 532–542 (2013).

    Article  CAS  Google Scholar 

  32. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    Article  CAS  Google Scholar 

  33. Tsukamoto, H., Sinha, A., DeWitt, M. & Farrens, D.L. Monomeric rhodopsin is the minimal functional unit required for arrestin binding. J. Mol. Biol. 399, 501–511 (2010).

    Article  CAS  Google Scholar 

  34. Fliesler, S.J. & Anderson, R.E. Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22, 79–131 (1983).

    Article  CAS  Google Scholar 

  35. Whorton, M.R. et al. Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J. Biol. Chem. 283, 4387–4394 (2008).

    Article  CAS  Google Scholar 

  36. Tsukamoto, H., Szundi, I., Lewis, J.W., Farrens, D.L. & Kliger, D.S. Rhodopsin in nanodiscs has native membrane-like photointermediates. Biochemistry 50, 5086–5091 (2011).

    Article  CAS  Google Scholar 

  37. Kenakin, T. Drug efficacy at G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 42, 349–379 (2002).

    Article  CAS  Google Scholar 

  38. Granier, S. et al. Structure and conformational changes in the C-terminal domain of the beta2-adrenoceptor: insights from fluorescence resonance energy transfer studies. J. Biol. Chem. 282, 13895–13905 (2007).

    Article  CAS  Google Scholar 

  39. Tapley, T.L. & Vickery, L.E. Preferential substrate binding orientation by the molecular chaperone HscA. J. Biol. Chem. 279, 28435–28442 (2004).

    Article  CAS  Google Scholar 

  40. Vélez-Ruiz, G.A. & Sunahara, R.K. Reconstitution of G protein-coupled receptors into a model bilayer system: reconstituted high-density lipoprotein particles. Methods Mol. Biol. 756, 167–182 (2011).

    Article  Google Scholar 

  41. Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Efremov for assistance with electron microscopy, E. Pardon and J. Steyaert (Vrije Universiteit Brussel) for providing purified Nb80, A. Manglik and D. Hilger for help with receptor production, L. Pardo for help with the statistical tests, R. Sunahara (University of California, San Diego) for providing the apoA-I plasmid and J.-M. Ruysschaert for helpful discussions. We acknowledge support from the Fonds de la Recherche Scientifique (FRS-FNRS) (grants F.4523.12, 34553.08 and T.0136.13), the US National Institute of Health (grants R01 NS028471 and R01GM083118) and a grant from the “Fond Extraordinaire de Recherche” (FER) 2007 of the Université Libre de Bruxelles. C.D. is a postdoctoral fellow of the FRS-FNRS. C.G. is a Chercheur Qualifié of the FRS-FNRS and a WELBIO investigator. M.M. was supported by a Hoover Foundation Brussels Fellowship from the Belgian American Educational Foundation (BAEF) and an American Heart Association (AHA) Award 15POST22700020.

Author information

Authors and Affiliations

Authors

Contributions

R.D. expressed and purified the receptor and performed all HDL reconstitutions and functional characterizations, with the assistance of C.T. R.D. also performed all mass spectrometry analysis. M.M. also expressed and purified receptor samples. C.D. and P.V.A. performed mass spectrometry experiments. C.G. and B.K.K. provided overall project supervision and wrote the paper along with R.D.

Corresponding authors

Correspondence to Brian K Kobilka or Cédric Govaerts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 1437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawaliby, R., Trubbia, C., Delporte, C. et al. Allosteric regulation of G protein–coupled receptor activity by phospholipids. Nat Chem Biol 12, 35–39 (2016). https://doi.org/10.1038/nchembio.1960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing