Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages

Abstract

The dual-specificity phosphatase 6 (Dusp6) functions as a feedback regulator of fibroblast growth factor (FGF) signaling to limit the activity of extracellular signal–regulated kinases (ERKs) 1 and 2. We have identified a small-molecule inhibitor of Dusp6—(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI)—using a transgenic zebrafish chemical screen. BCI treatment blocked Dusp6 activity and enhanced FGF target gene expression in zebrafish embryos. Docking simulations predicted an allosteric binding site for BCI within the phosphatase domain. In vitro studies supported a model in which BCI inhibits Dusp6 catalytic activation by ERK2 substrate binding. We used BCI treatment at varying developmental stages to uncover a temporal role for Dusp6 in restricting cardiac progenitors and controlling heart organ size. This study highlights the power of in vivo zebrafish chemical screens to identify new compounds targeting Dusp6, a component of the FGF signaling pathway that has eluded traditional high-throughput in vitro screens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a small molecule that hyperactivates FGF signaling in zebrafish.
Figure 2: BCI structure-activity relationship studies.
Figure 3: BCI activity require FGF ligand, and BCI inhibits ectopic expression of Dusp6.
Figure 4: BCI directly inhibits Dusp6 in both chemical complementation and pERK2 dephosphorylation assays.
Figure 5: Modeling of BCI-Dusp6 interactions and in vitro testing of an allosteric inhibition mechanism.
Figure 6: Dusp6 and FGFs regulate heart size.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Thisse, B. & Thisse, C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol. 287, 390–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Dailey, L., Ambrosetti, D., Mansukhani, A. & Basilico, C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev. 16, 233–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Tsang, M. & Dawid, I.B. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci. STKE 2004, pe17 (2004).

    PubMed  Google Scholar 

  4. Abraira, V.E. et al. Changes in Sef levels influence auditory brainstem development and function. J. Neurosci. 27, 4273–4282 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, C., Scott, D.A., Hatch, E., Tian, X. & Mansour, S.L. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134, 167–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Maillet, M. et al. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J. Biol. Chem. 283, 31246–31255 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vogt, A. et al. Automated image-based phenotypic analysis in zebrafish embryos. Dev. Dyn. 238, 656–663 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Peterson, R.T., Link, B.A., Dowling, J.E. & Schreiber, S.L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97, 12965–12969 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu, P.B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. North, T.E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Molina, G.A., Watkins, S.C. & Tsang, M. Generation of FGF reporter transgenic zebrafish and their utility in chemical screens. BMC Dev. Biol. 7, 62 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Callahan, J.F. & Chabot-Fletcher, M.C. Inhibitors of transcription factor NF-kB. US patent application WO 99/65495 (1999).

  14. Latinkic, B.V. et al. The Xenopus Brachyury promoter is activated by FGF and low concentrations of activin and suppressed by high concentrations of activin and by paired-type homeodomain proteins. Genes Dev. 11, 3265–3276 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maves, L., Jackman, W. & Kimmel, C.B. FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 129, 3825–3837 (2002).

    CAS  PubMed  Google Scholar 

  16. Fürthauer, M., Reifers, F., Brand, M., Thisse, B. & Thisse, C. sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Development 128, 2175–2186 (2001).

    PubMed  Google Scholar 

  17. Tsang, M., Friesel, R., Kudoh, T. & Dawid, I.B. Identification of Sef, a novel modulator of FGF signalling. Nat. Cell Biol. 4, 165–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Tsang, M. et al. A role for MKP3 in axial patterning of the zebrafish embryo. Development 131, 2769–2779 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Reifers, F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381–2395 (1998).

    CAS  PubMed  Google Scholar 

  20. Qian, F. et al. Microarray analysis of zebrafish cloche mutant using amplified cDNA and identification of potential downstream target genes. Dev. Dyn. 233, 1163–1172 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Sumanas, S., Jorniak, T. & Lin, S. Identification of novel vascular endothelial-specific genes by the microarray analysis of the zebrafish cloche mutants. Blood 106, 534–541 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mandl, M., Slack, D.N. & Keyse, S.M. Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol. Cell. Biol. 25, 1830–1845 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Camps, M. et al. Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280, 1262–1265 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, P. et al. Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MAP kinase phosphatase-2 and their ability to activate the phosphatase catalytically. J. Biol. Chem. 276, 29440–29449 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Slack, D.N., Seternes, O.M., Gabrielsen, M. & Keyse, S.M. Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J. Biol. Chem. 276, 16491–16500 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Vogt, A. & Lazo, J.S. Chemical complementation: a definitive phenotypic strategy for identifying small molecule inhibitors of elusive cellular targets. Pharmacol. Ther. 107, 212–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Vogt, A. & Lazo, J.S. Implementation of high-content assay for inhibitors of mitogen-activated protein kinase phosphatases. Methods 42, 268–277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Almo, S.C. et al. Structural genomics of protein phosphatases. J. Struct. Funct. Genomics 8, 121–140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeong, D.G. et al. Crystal structure of the catalytic domain of human DUSP5, a dual specificity MAP kinase protein phosphatase. Proteins 66, 253–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Jeong, D.G. et al. Crystal structure of the catalytic domain of human MAP kinase phosphatase 5: structural insight into constitutively active phosphatase. J. Mol. Biol. 360, 946–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Stewart, A.E., Dowd, S., Keyse, S.M. & McDonald, N.Q. Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation. Nat. Struct. Biol. 6, 174–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Morris, G.M. et al. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy functions. J. Comput. Chem. 19, 1639–1662 (1998).

    Article  CAS  Google Scholar 

  33. Jones, G., Willett, P., Glen, R.C., Leach, A.R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Atilgan, A.R. et al. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Owens, D.M. & Keyse, S.M. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26, 3203–3213 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Bahar, I., Chennubhotla, C. & Tobi, D. Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Curr. Opin. Struct. Biol. 17, 633–640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown, J.L. et al. Transcriptional profiling of endogenous germ layer precursor cells identifies dusp4 as an essential gene in zebrafish endoderm specification. Proc. Natl. Acad. Sci. USA 105, 12337–12342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kudoh, T. et al. A gene expression screen in zebrafish embryogenesis. Genome Res. 11, 1979–1987 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Keegan, B.R., Meyer, D. & Yelon, D. Organization of cardiac chamber progenitors in the zebrafish blastula. Development 131, 3081–3091 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Yelon, D. Cardiac patterning and morphogenesis in zebrafish. Dev. Dyn. 222, 552–563 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, J.N. & Fishman, M.C. Genetics of heart development. Trends Genet. 16, 383–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Marques, S.R., Lee, Y., Poss, K.D. & Yelon, D. Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart. Dev. Biol. 321, 397–406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reifers, F., Walsh, E.C., Leger, S., Stainier, D.Y. & Brand, M. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 127, 225–235 (2000).

    CAS  PubMed  Google Scholar 

  44. Schoenebeck, J.J., Keegan, B.R. & Yelon, D. Vessel and blood specification override cardiac potential in anterior mesoderm. Dev. Cell 13, 254–267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ducruet, A.P., Vogt, A., Wipf, P. & Lazo, J.S. Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer's disease. Annu. Rev. Pharmacol. Toxicol. 45, 725–750 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Bakan, A., Lazo, J.S., Wipf, P., Brummond, K.M. & Bahar, I. Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Curr. Med. Chem. 15, 2536–2544 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lazo, J.S. et al. Novel benzofuran inhibitors of human mitogen-activated protein kinase phosphatase-1. Bioorg. Med. Chem. 14, 5643–5650 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Gurtner, G.C., Werner, S., Barrandon, Y. & Longaker, M.T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Dowd, S., Sneddon, A.A. & Keyse, S.M. Isolation of the human genes encoding the Pyst1 and Pyst2 phosphatases: characterisation of Pyst2 as a cytosolic dual-specificity MAP kinase phosphatase and its catalytic activation by both MAP and SAP kinases. J. Cell Sci. 111, 3389–3399 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Hukriede, M. Rebagliati and I. Dawid for critical reading of the manuscript. We thank M.S. Poslusney for assistance in the syntheses. We thank R. Schultz (Developmental Therapeutics Program, US National Cancer Institute) for providing the National Cancer Institute diversity set and samples of individual compounds. The project described was supported in part by award number R01HL088016 to M.T. from the US National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, and Blood Institute or the National Institutes of Health (NIH). This work was also supported by NIH grants HD053287, CA52995, MH074411 and CA78039, and by the Fiske Drug Discovery Fund.

Author information

Authors and Affiliations

Authors

Contributions

G.M., A.V., A.B., P.Q.O., W.D., W.Z. and M.T. performed experiments. G.M., A.V., A.B., T.E.S., J.S.L., I.B., B.W.D. and M.T. designed experiments and analyzed data. M.T. wrote the paper with help from A.V., A.B., T.E.S., J.S.L., B.W.D. and I.B.

Corresponding author

Correspondence to Michael Tsang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 16097 kb)

Supplementary Movie 1

Dusp6 intrinsic flexibility of the general acid loop was generated using 3rd, 4th, and 5th slow modes. (MOV 156 kb)

Supplementary Movie 2

Catalytic activation of Dusp6 was generated using 5% of the entire spectrum of modes in the low frequency regime. (MOV 582 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina, G., Vogt, A., Bakan, A. et al. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat Chem Biol 5, 680–687 (2009). https://doi.org/10.1038/nchembio.190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing