Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A prevalent peptide-binding domain guides ribosomal natural product biosynthesis

Abstract

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly growing class of natural products. RiPP precursor peptides can undergo extensive enzymatic tailoring to yield structurally and functionally diverse products, and their biosynthetic logic makes them attractive bioengineering targets. Recent work suggests that unrelated RiPP-modifying enzymes contain structurally similar precursor peptide–binding domains. Using profile hidden Markov model comparisons, we discovered related and previously unrecognized peptide-binding domains in proteins spanning the majority of known prokaryotic RiPP classes, and we named this conserved domain the RiPP precursor peptide recognition element (RRE). Through binding studies we verified RRE's roles for three distinct RiPP classes: linear azole-containing peptides, thiopeptides and lasso peptides. Because numerous RiPP biosynthetic enzymes act on peptide substrates, our findings have powerful predictive value as to which protein(s) drive substrate binding, thereby laying a foundation for further characterization of RiPP biosynthetic pathways and the rational engineering of new peptide-binding activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of RiPP biosynthesis and the TOMM subclass.
Figure 2: Structural comparison of four RiPP-modifying enzymes.
Figure 3: RREs are present in diverse RiPP biosynthetic proteins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Newman, D.J. & Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlson, E.E. Natural products as chemical probes. ACS Chem. Biol. 5, 639–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arnison, P.G. et al. Ribosomally synthesized and posttranslationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bindman, N.A. & van der Donk, W.A. A general method for fluorescent labeling of the N-termini of lanthipeptides and its application to visualize their cellular localization. J. Am. Chem. Soc. 135, 10362–10371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cotter, P.D., Ross, R.P. & Hill, C. Bacteriocins—a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95–105 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Oman, T.J. & van der Donk, W.A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol. 6, 9–18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruffner, D.E., Schmidt, E.W. & Heemstra, J.R. Assessing the combinatorial potential of the RiPP cyanobactin tru pathway. ACS Synth. Biol. 4, 482–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Goto, Y., Ito, Y., Kato, Y., Tsunoda, S. & Suga, H. One-pot synthesis of azoline-containing peptides in a cell-free translation system integrated with a posttranslational cyclodehydratase. Chem. Biol. 21, 766–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Deane, C.D., Melby, J.O., Molohon, K.J., Susarrey, A.R. & Mitchell, D.A. Engineering unnatural variants of plantazolicin through codon reprogramming. ACS Chem. Biol. 8, 1998–2008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitchell, D.A. et al. Structural and functional dissection of the heterocyclic peptide cytotoxin. J. Biol. Chem. 284, 13004–13012 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Melby, J.O., Nard, N.J. & Mitchell, D.A. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr. Opin. Chem. Biol. 15, 369–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dunbar, K.L. et al. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat. Chem. Biol. 10, 823–829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, S.W. et al. Discovery of a widely distributed toxin biosynthetic gene cluster. Proc. Natl. Acad. Sci. USA 105, 5879–5884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt, E.W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA 102, 7315–7320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y.M., Milne, J.C., Madison, L.L., Kolter, R. & Walsh, C.T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274, 1188–1193 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Dunbar, K.L., Melby, J.O. & Mitchell, D.A. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat. Chem. Biol. 8, 569–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McIntosh, J.A. & Schmidt, E.W. Marine molecular machines: heterocyclization in cyanobactin biosynthesis. ChemBioChem 11, 1413–1421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burroughs, A.M., Iyer, L.M. & Aravind, L. Natural history of the E1-like superfamily: implication for adenylation, sulfur transfer and ubiquitin conjugation. Proteins 75, 895–910 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Melby, J.O., Dunbar, K.L., Trinh, N.Q. & Mitchell, D.A. Selectivity, directionality and promiscuity in peptide processing from a Bacillus sp. Al Hakam cyclodehydratase. J. Am. Chem. Soc. 134, 5309–5316 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Regni, C.A. et al. How the MccB bacterial ancestor of ubiquitin E1 initiates biosynthesis of the microcin C7 antibiotic. EMBO J. 28, 1953–1964 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McIntosh, J.A., Lin, Z., Tianero, M.D. & Schmidt, E.W. Aestuaramides, a natural library of cyanobactin cyclic peptides resulting from isoprene-derived Claisen rearrangements. ACS Chem. Biol. 8, 877–883 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ortega, M.A. et al. Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. Nature 517, 509–512 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Marchler-Bauer, A. et al. CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41, D348–D352 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Söding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005).

    Article  PubMed  Google Scholar 

  27. Lopes, A., Amarir-Bouhram, J., Faure, G., Petit, M.A. & Guerois, R. Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic Acids Res. 38, 3952–3962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klinman, J.P. & Bonnot, F. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ and LTQ. Chem. Rev. 114, 4343–4365 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Latham, J.A., Iavarone, A.T., Barr, I., Juthani, P.V. & Klinman, J.P. PqqD is a novel peptide chaperone that forms a ternary complex with the radical S-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway. J. Biol. Chem. 290, 12908–12918 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsai, T.Y., Yang, C.Y., Shih, H.L., Wang, A.H. & Chou, S.H. Xanthomonas campestris PqqD in the pyrroloquinoline quinone biosynthesis operon adopts a novel saddle-like fold that possibly serves as a PQQ carrier. Proteins 76, 1042–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wecksler, S.R. et al. Interaction of PqqE and PqqD in the pyrroloquinoline quinone (PQQ) biosynthetic pathway links PqqD to the radical SAM superfamily. Chem. Commun. (Camb.) 46, 7031–7033 (2010).

    Article  CAS  Google Scholar 

  33. Li, Y., Zirah, S. & Rebuffat, S. in Lasso Peptides 81–95 (Springer, New York, 2015).

  34. Geer, L.Y., Domrachev, M., Lipman, D.J. & Bryant, S.H. CDART: protein homology by domain architecture. Genome Res. 12, 1619–1623 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haft, D.H. A strain-variable bacteriocin in Bacillus anthracis and Bacillus cereus with repeated Cys-Xaa-Xaa motifs. Biol. Direct 4, 15 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dunbar, K.L., Tietz, J.I., Cox, C.L., Burkhart, B.J. & Mitchell, D.A. Identification of an auxiliary leader peptide–binding protein required for azoline formation in ribosomal natural products. J. Am. Chem. Soc. (in the press) (2015).

  37. Bantysh, O. et al. Enzymatic synthesis of bioinformatically predicted microcin C–like compounds encoded by diverse bacteria. MBio 5, e01059–14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hegemann, J.D., Zimmermann, M., Zhu, S., Klug, D. & Marahiel, M.A. Lasso peptides from proteobacteria: Genome mining employing heterologous expression and mass spectrometry. Biopolymers 100, 527–542 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Haft, D.H. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins and its nicotinoprotein redox partners. BMC Genomics 12, 21 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haft, D.H. & Basu, M.K. Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification. J. Bacteriol. 193, 2745–2755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schramma, K.R., Bushin, L.B. & Seyedsayamdost, M.R. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat. Chem. 7, 431–437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldman, P.J. et al. X-ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification. Proc. Natl. Acad. Sci. USA 110, 8519–8524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morinaka, B.I. et al. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse d-amino acid patterns into peptide natural products. Angew. Chem. Int. Edn Engl. 53, 8503–8507 (2014).

    Article  CAS  Google Scholar 

  44. Breil, B.T., Ludden, P.W. & Triplett, E.W. DNA sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin. J. Bacteriol. 175, 3693–3702 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Breil, B., Borneman, J. & Triplett, E.W. A newly discovered gene, tfuA, involved in the production of the ribosomally synthesized peptide antibiotic trifolitoxin. J. Bacteriol. 178, 4150–4156 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Molohon, K.J. et al. Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics. ACS Chem. Biol. 6, 1307–1313 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morris, R.P. et al. Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. J. Am. Chem. Soc. 131, 5946–5955 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Metelev, M. et al. Structure, bioactivity and resistance mechanism of streptomonomicin, an unusual lasso peptide from an understudied halophilic actinomycete. Chem. Biol. 22, 241–250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, J. et al. Structural and functional insight into an unexpectedly selective N-methyltransferase involved in plantazolicin biosynthesis. Proc. Natl. Acad. Sci. USA 110, 12954–12959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fedorov, A.A., Fedorov, E., Gertler, F. & Almo, S.C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat. Struct. Mol. Biol. 6, 661–665 (1999).

    Article  CAS  Google Scholar 

  51. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Šali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  PubMed  Google Scholar 

  53. Šali, A., Potterton, L., Yuan, F., van Vlijmen, H. & Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins 23, 318–326 (1995).

    Article  PubMed  Google Scholar 

  54. Atkinson, H.J., Morris, J.H., Ferrin, T.E. & Babbitt, P.C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS ONE 4, e4345 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao, S. et al. Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks. eLife 3, e03275 (2014).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Maniak and R. Dowen for cloning several of the TOMM biosynthetic proteins and to C. Cox for bioinformatics consultation. We also thank C. Deane for critical review of this manuscript. This work was supported by the US National Institutes of Health (NIH) (1R01 GM097142 to D.A.M. and 2T32 GM070421 to B.J.B. and K.L.D.). Additional financial support came from the University of Illinois at Urbana-Champaign Department of Chemistry (Robert C. and Carolyn J. Springborn Endowment to B.J.B. and Harold R. Snyder Fellowship to K.L.D. and G.A.H.). B.J.B. was also funded by a National Science Foundation Graduate Research Fellowship (DGE-1144245).

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by D.A.M. and B.J.B. and performed by B.J.B. Critical reagents were provided by K.L.D. and G.A.H. The manuscript was written by D.A.M. and B.J.B. The overall study was conceived and managed by D.A.M.

Corresponding author

Correspondence to Douglas A Mitchell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–10. (PDF 20420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkhart, B., Hudson, G., Dunbar, K. et al. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat Chem Biol 11, 564–570 (2015). https://doi.org/10.1038/nchembio.1856

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing