Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Convergence of biological nitration and nitrosation via symmetrical nitrous anhydride

Abstract

The current perspective holds that the generation of secondary signaling mediators from nitrite (NO2) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope–labeled NO2 and LC-MS/MS analysis of products reveals that NO2 also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by autoxidation of nitric oxide (NO) via the formation of symmetrical dinitrogen trioxide (nitrous anhydride, symN2O3). Although theoretical models have predicted physiological symN2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in vivo, with the concerted reactions of NO and NO2 shown to be critical for symN2O3 formation. These results reveal new mechanisms underlying the NO2 propagation of NO signaling and the regulation of both biomolecule function and signaling network activity via NO2-dependent nitrosation and nitration reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 15NO2 incorporation into NO2-CLA is dependent on NO production by activated RAW264.7 cells.
Figure 2: 15NO2 participates in nitration of CLA in the absence of cellular components.
Figure 3: 15NO2 mediates glutathione nitrosation in the presence of NO.
Figure 4: NO2 incorporation into NO2-CLA and GSNO is associated with symN2O3 formation.
Figure 5: NO2 incorporation into nitrating and nitrosating equivalents requires reaction with NO-derived species.
Figure 6: Inflammatory conditions promote NO2-dependent generation of symN2O3 in vivo.

Similar content being viewed by others

References

  1. Maron, B.A., Tang, S.S. & Loscalzo, J. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antioxid. Redox Signal. 18, 270–287 (2013).

    Article  CAS  Google Scholar 

  2. Bosworth, C.A., Toledo, J.C. Jr., Zmijewski, J.W., Li, Q. & Lancaster, J.R. Jr. Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide. Proc. Natl. Acad. Sci. USA 106, 4671–4676 (2009).

    Article  CAS  Google Scholar 

  3. Lancaster, J.R. Jr. Protein cysteine thiol nitrosation: maker or marker of reactive nitrogen species-induced nonerythroid cellular signaling? Nitric Oxide 19, 68–72 (2008).

    Article  CAS  Google Scholar 

  4. Möller, M.N. et al. Membrane “lens” effect: focusing the formation of reactive nitrogen oxides from the *NO/O2 reaction. Chem. Res. Toxicol. 20, 709–714 (2007).

    Article  Google Scholar 

  5. Nedospasov, A.A. Is N2O3 the main nitrosating intermediate in aerated nitric oxide (NO) solutions in vivo? If so, where, when, and which one? J. Biochem. Mol. Toxicol. 16, 109–120 (2002).

    Article  CAS  Google Scholar 

  6. Broniowska, K.A., Keszler, A., Basu, S., Kim-Shapiro, D.B. & Hogg, N. Cytochrome c-mediated formation of S-nitrosothiol in cells. Biochem. J. 442, 191–197 (2012).

    Article  CAS  Google Scholar 

  7. Souza, J.M., Peluffo, G. & Radi, R. Protein tyrosine nitration—functional alteration or just a biomarker? Free Radic. Biol. Med. 45, 357–366 (2008).

    Article  CAS  Google Scholar 

  8. Akaike, T., Nishida, M. & Fujii, S. Regulation of redox signalling by an electrophilic cyclic nucleotide. J. Biochem. 153, 131–138 (2013).

    Article  CAS  Google Scholar 

  9. Delmastro-Greenwood, M., Freeman, B.A. & Wendell, S.G. Redox-dependent anti-inflammatory signaling actions of unsaturated Fatty acids. Annu. Rev. Physiol. 76, 79–105 (2014).

    Article  CAS  Google Scholar 

  10. Schopfer, F.J., Cipollina, C. & Freeman, B.A. Formation and signaling actions of electrophilic lipids. Chem. Rev. 111, 5997–6021 (2011).

    Article  CAS  Google Scholar 

  11. Bonacci, G. et al. Conjugated linoleic acid is a preferential substrate for fatty acid nitration. J. Biol. Chem. 287, 44071–44082 (2012).

    Article  CAS  Google Scholar 

  12. Salvatore, S.R. et al. Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine. J. Lipid Res. 54, 1998–2009 (2013).

    Article  CAS  Google Scholar 

  13. Charles, R.L. et al. Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid inhibition of soluble epoxide hydrolase. Proc. Natl. Acad. Sci. USA 111, 8167–8172 (2014).

    Article  CAS  Google Scholar 

  14. Lundberg, J.O. & Weitzberg, E. Biology of nitrogen oxides in the gastrointestinal tract. Gut 62, 616–629 (2013).

    Article  CAS  Google Scholar 

  15. Goldstein, S. & Czapski, G. Kinetics of nitric oxide autoxidation in aqueous solution in the absence and presence of various reductants—the nature of the oxidizing intermediates. J. Am. Chem. Soc. 117, 12078–12084 (1995).

    Article  CAS  Google Scholar 

  16. Wink, D.A., Darbyshire, J.F., Nims, R.W., Saavedra, J.E. & Ford, P.C. Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem. Res. Toxicol. 6, 23–27 (1993).

    Article  CAS  Google Scholar 

  17. van Faassen, E.E. et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med. Res. Rev. 29, 683–741 (2009).

    Article  CAS  Google Scholar 

  18. van der Vliet, A., Eiserich, J.P., Halliwell, B. & Cross, C.E. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J. Biol. Chem. 272, 7617–7625 (1997).

    Article  CAS  Google Scholar 

  19. Ford, P.C. Reactions of NO and nitrite with heme models and proteins. Inorg. Chem. 49, 6226–6239 (2010).

    Article  CAS  Google Scholar 

  20. Castro, L., Eiserich, J.P., Sweeney, S., Radi, R. & Freeman, B.A. Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration. Arch. Biochem. Biophys. 421, 99–107 (2004).

    Article  CAS  Google Scholar 

  21. d'Ischia, M., Napolitano, A., Manini, P. & Panzella, L. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications. Chem. Res. Toxicol. 24, 2071–2092 (2011).

    Article  CAS  Google Scholar 

  22. Goldstein, S. & Czapski, G. Mechanism of the nitrosation of thiols and amines by oxygenated•NO solutions: the nature of the nitrosating intermediates. J. Am. Chem. Soc. 118, 3419–3425 (1996).

    Article  CAS  Google Scholar 

  23. Basu, S. et al. Catalytic generation of N2O3 by the concerted nitrite reductase and anhydrase activity of hemoglobin. Nat. Chem. Biol. 3, 785–794 (2007).

    Article  CAS  Google Scholar 

  24. Fernandez, B.O. & Ford, P.C. Nitrite catalyzes ferriheme protein reductive nitrosylation. J. Am. Chem. Soc. 125, 10510–10511 (2003).

    Article  CAS  Google Scholar 

  25. Tejero, J. et al. Low NO concentration dependence of reductive nitrosylation reaction of hemoglobin. J. Biol. Chem. 287, 18262–18274 (2012).

    Article  CAS  Google Scholar 

  26. Beckman, J.S. et al. Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 298, 438–445 (1992).

    Article  CAS  Google Scholar 

  27. Ischiropoulos, H. et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298, 431–437 (1992).

    Article  CAS  Google Scholar 

  28. Duranski, M.R. et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J. Clin. Invest. 115, 1232–1240 (2005).

    Article  CAS  Google Scholar 

  29. Bonczynski, J.J., Ludwig, L.L., Barton, L.J., Loar, A. & Peterson, M.E. Comparison of peritoneal fluid and peripheral blood pH, bicarbonate, glucose, and lactate concentration as a diagnostic tool for septic peritonitis in dogs and cats. Vet. Surg. 32, 161–166 (2003).

    Article  Google Scholar 

  30. Sennesael, J.J., De Smedt, G.C., Van der Niepen, P. & Verbeelen, D.L. The impact of peritonitis on peritoneal and systemic acid-base status of patients on continuous ambulatory peritoneal dialysis. Perit. Dial. Int. 14, 61–65 (1994).

    CAS  PubMed  Google Scholar 

  31. Vitturi, D.A. & Patel, R.P. Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy. Free Radic. Biol. Med. 51, 805–812 (2011).

    Article  CAS  Google Scholar 

  32. Kansanen, E., Jyrkkanen, H.K. & Levonen, A.L. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic. Biol. Med. 52, 973–982 (2012).

    Article  CAS  Google Scholar 

  33. Horakh, J., Borrmann, H. & Simon, A. Phase relationships in the N2O3/N2O4 system and crystal structures of N2O3 . Chemistry 1, 389–393 (1995).

    Article  CAS  Google Scholar 

  34. Fateley, W.G., Bent, H.A. & Crawford, B. Infrared spectra of the frozen oxides of nitrogen. J. Chem. Phys. 31, 204–217 (1959).

    Article  CAS  Google Scholar 

  35. Holland, R.F. & Maier, W.B. Infrared absorption spectra of nitrogen oxides in liquid xenon. Isomerization of N2O3a). J. Chem. Phys. 78, 2928–2941 (1983).

    Article  CAS  Google Scholar 

  36. Varetti, E.L. & Pimentel, G.C. Isomeric forms of dinitrogen trioxide in a nitrogen matrix. J. Chem. Phys. 55, 3813–3821 (1971).

    Article  CAS  Google Scholar 

  37. Shaw, A.W. & Vosper, A.J. Dinitrogen trioxide. Part IX. Stability of dinitrogen trioxide in solution. J. Chem. Soc. A 1971, 1592–1595 (1971).

    Article  Google Scholar 

  38. Jubert, A.H., Varetti, E.L., Villar, H.O. & Castro, E.A. A theoretical study of the relative stability of the isomeric forms of N2O3 . Theor. Chim. Acta 64, 313–316 (1984).

    Article  CAS  Google Scholar 

  39. Sun, Z., Liu, Y.D., Lv, C.L. & Zhong, R.G. Theoretical investigation of the isomerization of N2O3 and the N-nitrosation of dimethylamine by asym-N2O3, sym-N2O3, and transcis N2O3 isomers. J. Mol. Struct. Theochem 908, 107–113 (2009).

    Article  CAS  Google Scholar 

  40. Zakharov, I.I. & Zakharova, O.I. Nitrosonium nitrite isomer of N2O3: quantum-chemical data. J. Struct. Chem. 50, 212–218 (2009).

    Article  CAS  Google Scholar 

  41. Pryor, W.A., Lightsey, J.W. & Church, D.F. Reaction of nitrogen dioxide with alkenes and polyunsaturated fatty acids: addition and hydrogen-abstraction mechanisms. J. Am. Chem. Soc. 104, 6685–6692 (1982).

    Article  CAS  Google Scholar 

  42. Wink, D.A. et al. Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem. Res. Toxicol. 7, 519–525 (1994).

    Article  CAS  Google Scholar 

  43. Wink, D.A. & Ford, P.C. Nitric oxide reactions important to biological systems: a survey of some kinetics investigations. Methods 7, 14–20 (1995).

    Article  CAS  Google Scholar 

  44. Huie, R.E. The reaction kinetics of NO2 . Toxicology 89, 193–216 (1994).

    Article  CAS  Google Scholar 

  45. Galliker, B., Kissner, R., Nauser, T. & Koppenol, W.H. Intermediates in the autoxidation of nitrogen monoxide. Chemistry 15, 6161–6168 (2009).

    Article  CAS  Google Scholar 

  46. Amatore, C. et al. Characterization of the electrochemical oxidation of peroxynitrite: relevance to oxidative stress bursts measured at the single cell level. Chemistry 7, 4171–4179 (2001).

    Article  CAS  Google Scholar 

  47. Koppenol, W.H. Nitrosation, thiols, and hemoglobin: energetics and kinetics. Inorg. Chem. 51, 5637–5641 (2012).

    Article  CAS  Google Scholar 

  48. Pacher, P., Beckman, J.S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    Article  CAS  Google Scholar 

  49. Woodcock, S.R., Bonacci, G., Gelhaus, S.L. & Schopfer, F.J. Nitrated fatty acids: synthesis and measurement. Free Radic. Biol. Med. 59, 14–26 (2013).

    Article  CAS  Google Scholar 

  50. Lang, J.D. Jr. et al. Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation. J. Clin. Invest. 117, 2583–2591 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by US National Institutes of Health grants R01-HL058115, R01-HL64937, P01-HL103455 (B.A.F.), R01-AT006822 (F.J.S.) and AHA #14GRNT20170024 (F.J.S.). We thank M.T. Gladwin, J. Tejero, A.M. Ferreira and B. Alvarez for helpful discussions and T. Sparwasser for expert assistance with flow cytometry experiments.

Author information

Authors and Affiliations

Authors

Contributions

D.A.V. designed, performed and analyzed experiments, and wrote the manuscript. L.M. designed, performed and analyzed cell-based experiments. S.R.S. performed high-resolution LC-MS/MS experiments and contributed to overall LC-MS/MS method development. E.M.P. designed and performed •NO2 gas experiments. M.F. developed extraction methods for in vivo experiments. G.F.-S. contributed to data interpretation. J.R.L. designed experiments, contributed to data interpretation and provided critical insight into manuscript content. B.A.F. contributed to the overall concept, experimental design and manuscript preparation. F.J.S. designed experiments and contributed to data analysis and interpretation as well as manuscript writing.

Corresponding authors

Correspondence to Bruce A Freeman or Francisco J Schopfer.

Ethics declarations

Competing interests

B.A.F. and F.J.S. acknowledge financial interest in Complexa, Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1 and 2 (PDF 4444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitturi, D., Minarrieta, L., Salvatore, S. et al. Convergence of biological nitration and nitrosation via symmetrical nitrous anhydride. Nat Chem Biol 11, 504–510 (2015). https://doi.org/10.1038/nchembio.1814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing