Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual agonist occupancy of AT1-R–α2C-AR heterodimers results in atypical Gs-PKA signaling

Abstract

Hypersecretion of norepinephrine (NE) and angiotensin II (AngII) is a hallmark of major prevalent cardiovascular diseases that contribute to cardiac pathophysiology and morbidity. Herein, we explore whether heterodimerization of presynaptic AngII AT1 receptor (AT1-R) and NE α2C-adrenergic receptor (α2C-AR) could underlie their functional cross-talk to control NE secretion. Multiple bioluminescence resonance energy transfer and protein complementation assays allowed us to accurately probe the structures and functions of the α2C-AR–AT1-R dimer promoted by ligand binding to individual protomers. We found that dual agonist occupancy resulted in a conformation of the heterodimer different from that induced by active individual protomers and triggered atypical Gs-cAMP–PKA signaling. This specific pharmacological signaling unit was identified in vivo to promote not only NE hypersecretion in sympathetic neurons but also sympathetic hyperactivity in mice. Thus, we uncovered a new process by which GPCR heterodimerization creates an original functional pharmacological entity and that could constitute a promising new target in cardiovascular therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the heterodimerization between AT1-R and α2C-AR in HEK293T cells.
Figure 2: Characterization of individual agonist effects on the AT1-R–α2C-AR heterodimer.
Figure 3: CODA-RET characterization of β-arrestin 2 and G-protein recruitment to heteromeric α2C and AT1 receptors.
Figure 4: The nature of ligands dictates different β-arrestin 2 trafficking pathways activated by the AT1-R–α2C-AR heterodimer.
Figure 5: AngII-NE costimulation of the AT1-R–α2C-AR heterodimer generates new Gs-cAMP-PKA signaling.
Figure 6: NE potentiates AngII-induced increase in NE release in neurons or RSNA in mice through a PKA pathway.

Similar content being viewed by others

References

  1. Guyenet, P.G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    CAS  PubMed  Google Scholar 

  2. Paulis, L. & Unger, T. Novel therapeutic targets for hypertension. Nat. Rev. Cardiol. 7, 431–441 (2010).

    CAS  PubMed  Google Scholar 

  3. Perk, J. et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur. Heart J. 33, 1635–1701 (2012).

    CAS  PubMed  Google Scholar 

  4. Hein, L., Altman, J.D. & Kobilka, B.K. Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402, 181–184 (1999).

    CAS  PubMed  Google Scholar 

  5. Lymperopoulos, A., Rengo, G., Funakoshi, H., Eckhart, A.D. & Koch, W.J. Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat. Med. 13, 315–323 (2007).

    CAS  PubMed  Google Scholar 

  6. Rump, L.C., Bohmann, C., Schaible, U., Schultze-Seemann, W. & Schollmeyer, P.J. β-adrenergic, angiotensin II, and bradykinin receptors enhance neurotransmission in human kidney. Hypertension 26, 445–451 (1995).

    CAS  PubMed  Google Scholar 

  7. Costa, M. & Majewski, H. Facilitation of noradrenaline release from sympathetic nerves through activation of ACTH receptors, β-adrenoceptors and angiotensin II receptors. Br. J. Pharmacol. 95, 993–1001 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cox, S.L., Schelb, V., Trendelenburg, A.U. & Starke, K. Enhancement of noradrenaline release by angiotensin II and bradykinin in mouse atria: evidence for cross-talk between Gq/11 protein– and Gi/o protein–coupled receptors. Br. J. Pharmacol. 129, 1095–1102 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Talaia, C., Queiroz, G., Pinheiro, H., Moura, D. & Goncalves, J. Involvement of G-protein βγ subunits on the influence of inhibitory α2-autoreceptors on the angiotensin AT1-receptor modulation of noradrenaline release in the rat vas deferens. Neurochem. Int. 49, 698–707 (2006).

    CAS  PubMed  Google Scholar 

  10. Smith, N.J. & Milligan, G. Allostery at G protein–coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol. Rev. 62, 701–725 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. González, S. et al. Circadian-related heteromerization of adrenergic and dopamine D4 receptors modulates melatonin synthesis and release in the pineal gland. PLoS Biol. 10, e1001347 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. González-Maeso, J. et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93–97 (2008).

    PubMed  PubMed Central  Google Scholar 

  13. Kern, A., Albarran-Zeckler, R., Walsh, H.E. & Smith, R.G. Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 73, 317–332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rivero-Müller, A. et al. Rescue of defective G protein–coupled receptor function in vivo by intermolecular cooperation. Proc. Natl. Acad. Sci. USA 107, 2319–2324 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. Rozenfeld, R. et al. AT1R-CB1R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 30, 2350–2363 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. AbdAlla, S., Lother, H., Abdel-tawab, A.M. & Quitterer, U. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem. 276, 39721–39726 (2001).

    CAS  PubMed  Google Scholar 

  17. Jordan, B.A., Gomes, I., Rios, C., Filipovska, J. & Devi, L.A. Functional interactions between μ opioid and α2A-adrenergic receptors. Mol. Pharmacol. 64, 1317–1324 (2003).

    CAS  PubMed  Google Scholar 

  18. Small, K.M. et al. α2A- and α2C-adrenergic receptors form homo- and heterodimers: the heterodimeric state impairs agonist-promoted GRK phosphorylation and β-arrestin recruitment. Biochemistry 45, 4760–4767 (2006).

    CAS  PubMed  Google Scholar 

  19. Guo, W. et al. Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 27, 2293–2304 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dalrymple, M.B., Pfleger, K.D. & Eidne, K.A. G protein–coupled receptor dimers: functional consequences, disease states and drug targets. Pharmacol. Ther. 118, 359–371 (2008).

    CAS  PubMed  Google Scholar 

  21. Lohse, M.J., Nuber, S. & Hoffmann, C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein–coupled receptor activation and signaling. Pharmacol. Rev. 64, 299–336 (2012).

    CAS  PubMed  Google Scholar 

  22. Denis, C., Sauliere, A., Galandrin, S., Senard, J.M. & Gales, C. Probing heterotrimeric G protein activation: applications to biased ligands. Curr. Pharm. Des. 18, 128–144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Galés, C. et al. Probing the activation-promoted structural rearrangements in preassembled receptor–G protein complexes. Nat. Struct. Mol. Biol. 13, 778–786 (2006).

    PubMed  Google Scholar 

  24. Saulière, A. et al. Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat. Chem. Biol. 8, 622–630 (2012).

    PubMed  Google Scholar 

  25. Springael, J.Y., Urizar, E., Costagliola, S., Vassart, G. & Parmentier, M. Allosteric properties of G protein–coupled receptor oligomers. Pharmacol. Ther. 115, 410–418 (2007).

    CAS  PubMed  Google Scholar 

  26. Urizar, E. et al. CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nat. Chem. Biol. 7, 624–630 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Muthuswamy, S.K., Gilman, M. & Brugge, J.S. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol. Cell. Biol. 19, 6845–6857 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhan, L., Xiang, B. & Muthuswamy, S.K. Controlled activation of ErbB1/ErbB2 heterodimers promote invasion of three-dimensional organized epithelia in an ErbB1-dependent manner: implications for progression of ErbB2-overexpressing tumors. Cancer Res. 66, 5201–5208 (2006).

    CAS  PubMed  Google Scholar 

  29. Terrillon, S. & Bouvier, M. Receptor activity-independent recruitment of β-arrestin 2 reveals specific signalling modes. EMBO J. 23, 3950–3961 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Esler, M., Lambert, G., Brunner-La Rocca, H.P., Vaddadi, G. & Kaye, D. Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol. Scand. 177, 275–284 (2003).

    CAS  PubMed  Google Scholar 

  31. Ma, X., Abboud, F.M. & Chapleau, M.W. A novel effect of angiotensin on renal sympathetic nerve activity in mice. J. Hypertens. 19, 609–618 (2001).

    CAS  PubMed  Google Scholar 

  32. Rozenfeld, R. & Devi, L.A. Exploring a role for heteromerization in GPCR signalling specificity. Biochem. J. 433, 11–18 (2011).

    CAS  PubMed  Google Scholar 

  33. Rashid, A.J. et al. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc. Natl. Acad. Sci. USA 104, 654–659 (2007).

    CAS  PubMed  Google Scholar 

  34. Fonseca, J.M. & Lambert, N.A. Instability of a class a G protein–coupled receptor oligomer interface. Mol. Pharmacol. 75, 1296–1299 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hern, J.A. et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. USA 107, 2693–2698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kasai, R.S. et al. Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192, 463–480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lambert, N.A. GPCR dimers fall apart. Sci. Signal. 3, pe12 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Kubista, H. & Boehm, S. Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol. Ther. 112, 213–242 (2006).

    CAS  PubMed  Google Scholar 

  39. Waldhoer, M. et al. A heterodimer-selective agonist shows in vivo relevance of G protein–coupled receptor dimers. Proc. Natl. Acad. Sci. USA 102, 9050–9055 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Goudet, C. et al. Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J. Biol. Chem. 280, 24380–24385 (2005).

    CAS  PubMed  Google Scholar 

  41. Han, Y., Moreira, I.S., Urizar, E., Weinstein, H. & Javitch, J.A. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat. Chem. Biol. 5, 688–695 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hlavackova, V. et al. Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J. 24, 499–509 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaupmann, K. et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687 (1998).

    CAS  PubMed  Google Scholar 

  44. Maurice, P., Kamal, M. & Jockers, R. Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol. Sci. 32, 514–520 (2011).

    CAS  PubMed  Google Scholar 

  45. Pin, J.P. et al. Activation mechanism of the heterodimeric GABAB receptor. Biochem. Pharmacol. 68, 1565–1572 (2004).

    CAS  PubMed  Google Scholar 

  46. Xu, H. et al. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl. Acad. Sci. USA 101, 14258–14263 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Boularan, C. et al. β-Arrestin 2 oligomerization controls the Mdm2-dependent inhibition of p53. Proc. Natl. Acad. Sci. USA 104, 18061–18066 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Storez, H. et al. Homo- and hetero-oligomerization of β-arrestins in living cells. J. Biol. Chem. 280, 40210–40215 (2005).

    CAS  PubMed  Google Scholar 

  49. Matthies, H.J. et al. Rab11 supports amphetamine-stimulated norepinephrine transporter trafficking. J. Neurosci. 30, 7863–7877 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hansen, J.L., Haunso, S., Brann, M.R., Sheikh, S.P. & Weiner, D.M. Loss-of-function polymorphic variants of the human angiotensin II type 1 receptor. Mol. Pharmacol. 65, 770–777 (2004).

    CAS  PubMed  Google Scholar 

  51. Sénard, J.M., Mauriege, P., Daviaud, D. & Paris, H. α2-Adrenoceptor in HT29 human colon adenocarcinoma cell-line: study of [3H](−)-adrenaline binding. Eur. J. Pharmacol. 162, 225–236 (1989).

    PubMed  Google Scholar 

Download references

Acknowledgements

M.B. was supported by a doctoral fellow fellowship from the Fondation pour la Recherche Médicale. J.-M.S. and C.G. are supported by the Institut National de la Santé et de la Recherche Médicale and by grants from La Société Française d'Hypertension Artérielle and the Fondation Bettencourt Schueller. H.J.M. was supported by a US National Institutes of Health grant (grant number DA038058-01).

Author information

Authors and Affiliations

Authors

Contributions

M.B. designed and performed most of the experiments, analyzed and interpreted data and helped to write the manuscript. S.G. and C.B. helped in the anisotropy experiments and performed β-arrestin and cAMP experiments, analyzed data and helped to write the manuscript. H.J.M. performed NE-release experiments in primary cultures of sympathetic neurons and analyzed the data. F.D. designed, performed and analyzed mouse microneurography experiments. C.D. helped in the binding studies, the design of most experiments and the interpretation of the data. J.J. helped with construction of the Venus and Luciferase fusion BRET probes, the interpretation of the data and the editing of the manuscript. S.M. performed anisotropy experiments and analyzed the data. V.P. and M.-H.S. established some plasmid constructs. S.J.S. and J.L.H. performed some binding studies and analyzed and interpreted data. A.P. assisted in data processing and analysis and with manuscript preparation. A.G. supervised the neuron experiments and wrote the manuscript. J.-M.S. supervised some aspects of the project, analyzed the data and wrote the manuscript. C.G. conceived and supervised the project, performed data analysis and wrote the manuscript.

Corresponding author

Correspondence to Céline Galés.

Ethics declarations

Competing interests

J.L.H. is an employee of Novo Nordisk and is a shareholder of Novo Nordisk.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–15 and Supplementary Tables 1 and 2. (PDF 1349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellot, M., Galandrin, S., Boularan, C. et al. Dual agonist occupancy of AT1-R–α2C-AR heterodimers results in atypical Gs-PKA signaling. Nat Chem Biol 11, 271–279 (2015). https://doi.org/10.1038/nchembio.1766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1766

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing