Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclodipeptide synthases are a family of tRNA-dependent peptide bond–forming enzymes

Abstract

Cyclodipeptides and their derivatives belong to the diketopiperazine (DKP) family, which is comprised of a broad array of natural products that exhibit useful biological properties. In the few known DKP biosynthetic pathways, nonribosomal peptide synthetases (NRPSs) are involved in the synthesis of cyclodipeptides that constitute the DKP scaffold, except in the albonoursin (1) pathway. Albonoursin, or cyclo(α,β-dehydroPhe-α,β-dehydroLeu), is an antibacterial DKP produced by Streptomyces noursei. In this pathway, the formation of the cyclo(Phe-Leu) (2) intermediate is catalyzed by AlbC, a small protein unrelated to NRPSs. We demonstrated that AlbC uses aminoacyl-tRNAs as substrates to catalyze the formation of the DKP peptide bonds. Moreover, several other bacterial proteins, presenting moderate similarity to AlbC, also use aminoacyl-tRNAs to synthesize various cyclodipeptides. Therefore, AlbC and these related proteins belong to a newly defined family of enzymes that we have named cyclodipeptide synthases (CDPSs).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: In vitro reconstitution of AlbC activity.
Figure 3: Protein sequence alignments of proteins similar to AlbC.
Figure 4: AlbC-related proteins are CDPSs synthesizing various cyclodipeptides.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ström, K., Sjogren, J., Broberg, A. & Schnurer, J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 68, 4322–4327 (2002).

    Article  Google Scholar 

  2. Kohn, H. & Widger, W. The molecular basis for the mode of action of bicyclomycin. Curr. Drug Targets Infect. Disord. 5, 273–295 (2005).

    Article  CAS  Google Scholar 

  3. Kanoh, K. et al. Antitumor activity of phenylahistin in vitro and in vivo. Biosci. Biotechnol. Biochem. 63, 1130–1133 (1999).

    Article  CAS  Google Scholar 

  4. Williams, D.E. et al. Ambewelamides A and B, antineoplastic epidithiapiperazinediones isolated from the lichen Usnea sp. Tetrahedr. Lett. 39, 9579–9582 (1998).

    Article  Google Scholar 

  5. Waring, P. & Beaver, J. Gliotoxin and related epipolythiodioxopiperazines. Gen. Pharmacol. 27, 1311–1316 (1996).

    Article  CAS  Google Scholar 

  6. Maiya, S., Grundmann, A., Li, S.M. & Turner, G. The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase. ChemBioChem 7, 1062–1069 (2006).

    Article  CAS  Google Scholar 

  7. Walzel, B., Riederer, B. & Keller, U. Mechanism of alkaloid cyclopeptide synthesis in the ergot fungus Claviceps purpurea. Chem. Biol. 4, 223–230 (1997).

    Article  CAS  Google Scholar 

  8. Healy, F.G., Wach, M., Krasnoff, S.B., Gibson, D.M. & Loria, R. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Mol. Microbiol. 38, 794–804 (2000).

    Article  CAS  Google Scholar 

  9. Schultz, A.W. et al. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J. Am. Chem. Soc. 130, 4507–4516 (2008).

    Article  CAS  Google Scholar 

  10. Balibar, C.J. & Walsh, C.T. GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry 45, 15029–15038 (2006).

    Article  CAS  Google Scholar 

  11. Gardiner, D.M., Cozijnsen, A.J., Wilson, L.M., Pedras, M.S. & Howlett, B.J. The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Mol. Microbiol. 53, 1307–1318 (2004).

    Article  CAS  Google Scholar 

  12. Schwarzer, D., Mootz, H.D. & Marahiel, M.A. Exploring the impact of different thioesterase domains for the design of hybrid peptide synthetases. Chem. Biol. 8, 997–1010 (2001).

    Article  CAS  Google Scholar 

  13. Gruenewald, S., Mootz, H.D., Stehmeier, P. & Stachelhaus, T. In vivo production of artificial nonribosomal peptide products in the heterologous host Escherichia coli. Appl. Environ. Microbiol. 70, 3282–3291 (2004).

    Article  CAS  Google Scholar 

  14. Lautru, S., Gondry, M., Genet, R. & Pernodet, J.L. The albonoursin gene cluster of S. noursei: biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases. Chem. Biol. 9, 1355–1364 (2002).

    Article  CAS  Google Scholar 

  15. Fukushima, K., Yazawa, K. & Arai, T. Biological activities of albonoursin. J. Antibiot. (Tokyo) 26, 175–176 (1973).

    Article  CAS  Google Scholar 

  16. Watanabe, K. et al. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature 449, 867–871 (2007).

    Article  CAS  Google Scholar 

  17. Mainardi, J.L., Villet, R., Bugg, T.D., Mayer, C. & Arthur, M. Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol. Rev. 32, 386–408 (2008).

    Article  CAS  Google Scholar 

  18. Rost, B. Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94 (1999).

    Article  CAS  Google Scholar 

  19. Combet, C., Blanchet, C., Geourjon, C. & Deleage, G. NPS@: network protein sequence analysis. Trends Biochem. Sci. 25, 147–150 (2000).

    Article  CAS  Google Scholar 

  20. Loria, R. et al. Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie Van Leeuwenhoek 94, 3–10 (2008).

    Article  Google Scholar 

  21. Gondry, M. et al. Cyclic dipeptide oxidase from Streptomyces noursei. Isolation, purification and partial characterization of a novel, amino acyl alpha,beta-dehydrogenase. Eur. J. Biochem. 268, 1712–1721 (2001).

    Article  CAS  Google Scholar 

  22. McLean, K.J. et al. Characterization of active site structure in CYP121: a cytochrome P450 essential for viability of Mycobacterium tuberculosis H37Rv. J. Biol. Chem. 283, 33406–33416 (2008).

    Article  CAS  Google Scholar 

  23. Belin, P. et al. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA (in the press).

  24. Tang, M.R., Sternberg, D., Behr, R.K., Sloma, A. & Berka, R.M. Use of transcriptional profiling & bioinformatics to solve production problems: eliminating red pigment production in a Bacillus subtilis strain producing hyaluronic acid. Ind. Biotechnol. 2, 66–74 (2006).

    Article  CAS  Google Scholar 

  25. Uffen, R.L. & Canale-Parola, E. Synthesis of pulcherriminic acid by Bacillus subtilis. J. Bacteriol. 111, 86–93 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. RajBhandary, U.L. & Soll, D. Aminoacyl-tRNAs, the bacterial cell envelope, and antibiotics. Proc. Natl. Acad. Sci. USA 105, 5285–5286 (2008).

    Article  CAS  Google Scholar 

  27. Abramochkin, G. & Shrader, T.E. Aminoacyl-tRNA recognition by the leucyl/phenylalanyl-tRNA-protein transferase. J. Biol. Chem. 271, 22901–22907 (1996).

    Article  CAS  Google Scholar 

  28. Villet, R. et al. Idiosyncratic features in tRNAs participating in bacterial cell wall synthesis. Nucleic Acids Res. 35, 6870–6883 (2007).

    Article  CAS  Google Scholar 

  29. Kanzaki, H., Imura, D., Nitoda, T. & Kawazu, K. Enzymatic dehygrogenation of cyclo(L-Leu-L-Phe) to a bioactive derivative, albonoursin. J. Mol. Catal. B Enzym. 6, 265–270 (1999).

    Article  CAS  Google Scholar 

  30. Abramochkin, G. & Shrader, T.E. The leucyl/phenylalanyl-tRNA-protein transferase. Overexpression and characterization of substrate recognition, domain structure, and secondary structure. J. Biol. Chem. 270, 20621–20628 (1995).

    Article  CAS  Google Scholar 

  31. Chen, Y.-H., Liou, S.-E. & Chen, C.-C. Two-step mass spectrometric approach for the identification of diketopiperazines in chicken essence. Eur. Food Res. Technol. 218, 589–597 (2004).

    Article  CAS  Google Scholar 

  32. Stark, T. & Hofmann, T. Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J. Agric. Food Chem. 53, 7222–7231 (2005).

    Article  CAS  Google Scholar 

  33. Falick, A.M., Hines, W.M., Medzihradszky, K.F., Baldwin, M.A. & Gibson, B.W. Low-mass ions produced from peptides by high-energy collision-induced dissociation in tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 882–893 (1993).

    Article  CAS  Google Scholar 

  34. Papayannopoulos, I.A. The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom. Rev. 14, 49–73 (1995).

    Article  CAS  Google Scholar 

  35. Roepstorff, P. & Fohlman, J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom. 11, 601 (1984).

    Article  CAS  Google Scholar 

  36. Johnson, R.S., Martin, S.A., Biemann, K., Stults, J.T. & Watson, J.T. Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal. Chem. 59, 2621–2625 (1987).

    Article  CAS  Google Scholar 

  37. Jeedigunta, S., Krenisky, J.M. & Kerr, R.G. Diketopiperazines as advanced intermediates in the biosynthesis of Ecteinascidins. Tetrahedron 56, 3303–3307 (2000).

    Article  CAS  Google Scholar 

  38. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  39. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Olaizola and M. Bahut for technical assistance, S. Zinn-Justin and J. Baillon for helpful discussion, and M. Moutiez for the critical reading of the manuscript. We are indebted to M. Springer (Institut de Biologie Physico-Chimique) for the plasmid pBI and to F. Doucet-Populaire (Université Paris Descartes), T. Msadek (Pasteur Institute), A. Bolotin (Institut National de la Recherche Agronomique), T. Baba (Juntendo University) and E. Krin (Pasteur Institute) for the gifts of bacterial strains and bacterial genomic DNAs. This study was supported by Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud 11, Pôle de Recherche et d'Enseignement Supérieur UniverSud Paris and Kyowa Hakko Bio Co. Ltd. L.S. is a recipient of a doctoral fellowship from Commissariat à l'Energie Atomique.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muriel Gondry or Jean-Luc Pernodet.

Ethics declarations

Competing interests

M.G., L.S., P.B., R.T., S.-i.H., R.G. and J.-L.P. are inventors in patent applications related to the use of CDPSs for dipeptide synthesis. The research performed was supported in part by Kyowa Hakko Bio Co. Ltd, a company that is a co-owner of the patent applications. S.-i.H. is an employee of Kyowa Hakko Bio Co. Ltd.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Table 1 and Supplementary Methods (PDF 1459 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gondry, M., Sauguet, L., Belin, P. et al. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond–forming enzymes. Nat Chem Biol 5, 414–420 (2009). https://doi.org/10.1038/nchembio.175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing