Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer

Abstract

G protein–coupled receptors (GPCRs) are major players in cell communication. Although they form functional monomers, increasing evidence indicates that GPCR dimerization has a critical role in cooperative phenomena that are important for cell signal integration. However, the structural bases of these phenomena remain elusive. Here, using well-characterized receptor dimers, the metabotropic glutamate receptors (mGluRs), we show that structural changes at the dimer interface are linked to receptor activation. We demonstrate that the main dimer interface is formed by transmembrane α helix 4 (TM4) and TM5 in the inactive state and by TM6 in the active state. This major change in the dimer interface is required for receptor activity because locking the TM4-TM5 interface prevents activation by agonist, whereas locking the TM6 interface leads to a constitutively active receptor. These data provide important information on the activation mechanism of mGluRs and improve our understanding of the structural basis of the negative cooperativity observed in these GPCR dimers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cysteine cross-linking identifies TM4, TM5 and TM6 at the 7TM dimer interface.
Figure 2: The interface of mGluR2 dimers is switched from TM4-5 to TM6 during activation.
Figure 3: Locking the TM4-TM5 interface impairs agonist intramolecular signaling.
Figure 4: Locking the TM6 interface stabilizes mGluR2 in the active state.
Figure 5: TM4 exposure during receptor activation favors the assembly of larger mGluR2 oligomers.
Figure 6: Rearrangement of the transmembrane domain interface during GPCR activation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lagerström, M.C. & Schiöth, H.B. Structural diversity of G protein–coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339–357 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. Prézeau, L. et al. Functional crosstalk between GPCRs: with or without oligomerization. Curr. Opin. Pharmacol. 10, 6–13 (2010).

    Article  PubMed  CAS  Google Scholar 

  3. Ferré, S. et al. G protein–coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev. 66, 413–434 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Smith, N.J. & Milligan, G. Allostery at G protein–coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol. Rev. 62, 701–725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Albizu, L. et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat. Chem. Biol. 6, 587–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Birdsall, N.J. Class A GPCR heterodimers: evidence from binding studies. Trends Pharmacol. Sci. 31, 499–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Springael, J.Y., Urizar, E., Costagliola, S., Vassart, G. & Parmentier, M. Allosteric properties of G protein–coupled receptor oligomers. Pharmacol. Ther. 115, 410–418 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang, J., Chen, S., Zhang, J.J. & Huang, X.Y. Crystal structure of oligomeric β1-adrenergic G protein–coupled receptors in ligand-free basal state. Nat. Struct. Mol. Biol. 20, 419–425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, W. et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manglik, A. et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruprecht, J.J., Mielke, T., Vogel, R., Villa, C. & Schertler, G.F. Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 23, 3609–3620 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo, W., Shi, L., Filizola, M., Weinstein, H. & Javitch, J.A. Crosstalk in G protein–coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc. Natl. Acad. Sci. USA 102, 17495–17500 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mancia, F., Assur, Z., Herman, A.G., Siegel, R. & Hendrickson, W.A. Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor. EMBO Rep. 9, 363–369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hebert, T.E. et al. A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem. 271, 16384–16392 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Guo, W. et al. Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J. 27, 2293–2304 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Calebiro, D. et al. Single-molecule analysis of fluorescently labeled G-protein–coupled receptors reveals complexes with distinct dynamics and organization. Proc. Natl. Acad. Sci. USA 110, 743–748 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Hern, J.A. et al. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. USA 107, 2693–2698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kasai, R.S. & Kusumi, A. Single-molecule imaging revealed dynamic GPCR dimerization. Curr. Opin. Cell Biol. 27, 78–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Rondard, P., Goudet, C., Kniazeff, J., Pin, J.-P. & Prézeau, L. The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein–coupled receptors. Neuropharmacology 60, 82–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Brock, C. et al. Activation of a dimeric metabotropic glutamate receptor by intersubunit rearrangement. J. Biol. Chem. 282, 33000–33008 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Doumazane, E. et al. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J. 25, 66–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Maurel, D. et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat. Methods 5, 561–567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hlavackova, V. et al. Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J. 24, 499–509 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hlavackova, V. et al. Sequential inter- and intrasubunit rearrangements during activation of dimeric metabotropic glutamate receptor 1. Sci. Signal. 5, ra59 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Tateyama, M., Abe, H., Nakata, H., Saito, O. & Kubo, Y. Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1α. Nat. Struct. Mol. Biol. 11, 637–642 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. El Moustaine, D. et al. Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc. Natl. Acad. Sci. USA 109, 16342–16347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Doré, A.S. et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511, 557–562 (2014).

    Article  PubMed  CAS  Google Scholar 

  30. Wu, H. et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344, 58–64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Binet, V. et al. Common structural requirements for heptahelical domain function in class A and class C G protein–coupled receptors. J. Biol. Chem. 282, 12154–12163 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Huang, S. et al. Interdomain movements in metabotropic glutamate receptor activation. Proc. Natl. Acad. Sci. USA 108, 15480–15485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doumazane, E. et al. Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 110, E1416–E1425 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manglik, A. & Kobilka, B. The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Curr. Opin. Cell Biol. 27, 136–143 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Rasmussen, S.G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pin, J.-P., Galvez, T. & Prézeau, L. Evolution, structure and activation mechanism of family 3/C G-protein coupled receptors. Pharmacol. Ther. 98, 325–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Nordström, K.J., Sällman Almén, M., Edstam, M.M., Fredriksson, R. & Schiöth, H.B. Independent HHsearch, Needleman-Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein–coupled receptor families. Mol. Biol. Evol. 28, 2471–2480 (2011).

    Article  PubMed  CAS  Google Scholar 

  38. Knepp, A.M., Periole, X., Marrink, S.J., Sakmar, T.P. & Huber, T. Rhodopsin forms a dimer with cytoplasmic helix 8 contacts in native membranes. Biochemistry 51, 1819–1821 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Periole, X., Knepp, A.M., Sakmar, T.P., Marrink, S.J. & Huber, T. Structural determinants of the supramolecular organization of G protein–coupled receptors in bilayers. J. Am. Chem. Soc. 134, 10959–10965 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Muto, T., Tsuchiya, D., Morikawa, K. & Jingami, H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 104, 3759–3764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parmentier, M.-L., Prézeau, L., Bockaert, J. & Pin, J.-P. A model for the functioning of family 3 GPCRs. Trends Pharmacol. Sci. 23, 268–274 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Geng, Y., Bush, M., Mosyak, L., Wang, F. & Fan, Q.R. Structural mechanism of ligand activation in human GABAB receptor. Nature 504, 254–259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monnier, C. et al. Trans-activation between 7TM domains: implication in heterodimeric GABAB receptor activation. EMBO J. 30, 32–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Damian, M., Martin, A., Mesnier, D., Pin, J.-P. & Banères, J.L. Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO J. 25, 5693–5702 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han, Y., Moreira, I.S., Urizar, E., Weinstein, H. & Javitch, J.A. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat. Chem. Biol. 5, 688–695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rovira, X., Pin, J.-P. & Giraldo, J. The asymmetric/symmetric activation of GPCR dimers as a possible mechanistic rationale for multiple signalling pathways. Trends Pharmacol. Sci. 31, 15–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Comps-Agrar, L. et al. The oligomeric state sets GABAB receptor signalling efficacy. EMBO J. 30, 2336–2349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fribourg, M. et al. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147, 1011–1023 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moreno, J.L. et al. Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5–HT2A.mGlu2) receptor heteromerization and its psychoactive behavioral function. J. Biol. Chem. 287, 44301–44319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Šali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  PubMed  Google Scholar 

  52. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Shen, M.Y. & Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Tsuchiya, D., Kunishima, N., Kamiya, N., Jingami, H. & Morikawa, K. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc. Natl. Acad. Sci. USA 99, 2660–2665 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Cisbio Company for their support in providing reagents. The intracellular calcium release and FRET experiments were performed at the ARPEGE (Pharmacology Screening-Interactome) facility, Institut de Génomique Fonctionnelle (Montpellier, France). J.L. was supported by the National Natural Science Foundation of China (grant numbers 31130028 and 31225011), the Ministry of Science and Technology (grant number 2012CB518000), the Program for Introducing Talents of Discipline to the Universities of the Ministry of Education (grant number B08029) and the Mérieux Research Grants Program of the Institut Mérieux. P.R. and J.-P.P. are supported by the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale and by grants from the Agence Nationale de la Recherche (ANR-09-PIRI-0011), the Fondation pour la Recherche Médicale (Equipe FRM DEQ20130326522) and the Fondation Bettencourt Schueller. L.X. was supported by a doctoral fellowship from the French Embassy in China and X.R. by a FEBS long-term fellowship and by a Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) BP post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

L.X., X.R., J.L., J.-P.P. and P.R. designed experiments; L.X. performed molecular biology, cross-linking, functional assays and FRET experiments; X.R. performed molecular modeling; P.S. performed FRET experiments; H.Z. performed molecular biology; J.L., J.-P.P. and P.R. wrote the manuscript.

Corresponding authors

Correspondence to Jianfeng Liu or Jean-Philippe Pin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–13. (PDF 12218 kb)

Supplementary Video 1

Movie to illustrate the changes of the mGluR2 ECD dimer between the resting and active states (side view). (MP4 510 kb)

Supplementary Video 2

Movie to illustrate the changes of the mGluR2 ECD dimer between the resting and active states (bottom view). (MP4 954 kb)

Supplementary Video 3

Movie to illustrate the major rearrangement of the mGluR2 7TM dimer between the resting and active states (top view). (MP4 1280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., Rovira, X., Scholler, P. et al. Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nat Chem Biol 11, 134–140 (2015). https://doi.org/10.1038/nchembio.1711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing