Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Secondary structure reshuffling modulates glycosyltransferase function at the membrane

Abstract

Secondary structure refolding is a key event in biology as it modulates the conformation of many proteins in the cell, generating functional or aberrant states. The crystal structures of mannosyltransferase PimA reveal an exceptional flexibility of the protein along the catalytic cycle, including β-strand–to–α-helix and α-helix–to–β-strand transitions. These structural changes modulate catalysis and are promoted by interactions of the protein with anionic phospholipids in the membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of PimA in the absence of ligands.
Figure 2: The canonical GT-B conformation (GDP-bound form) of PimA, but not the atypical apo form, is functionally competent for nucleotide-sugar binding and catalysis.
Figure 3: The N-terminal domain of PimA mediates protein-membrane association.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Korduláková, J. et al. J. Biol. Chem. 277, 31335–31344 (2002).

    Article  Google Scholar 

  2. Guerin, M.E. et al. J. Biol. Chem. 284, 25687–25696 (2009).

    Article  CAS  Google Scholar 

  3. Guerin, M.E., Kordulakova, J., Alzari, P.M., Brennan, P.J. & Jackson, M. J. Biol. Chem. 285, 33577–33583 (2010).

    Article  CAS  Google Scholar 

  4. Varki, A. et al. Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, New York, 2009).

  5. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  Google Scholar 

  6. Albesa-Jové, D., Giganti, D., Jackson, M., Alzari, P.M. & Guerin, M.E. Glycobiology 24, 108–124 (2014).

    Article  Google Scholar 

  7. Guerin, M.E. et al. J. Biol. Chem. 282, 20705–20714 (2007).

    Article  CAS  Google Scholar 

  8. Guerin, M.E. et al. J. Biol. Chem. 284, 21613–21625 (2009).

    Article  CAS  Google Scholar 

  9. Giganti, D. et al. J. Biol. Chem. 288, 29797–29808 (2013).

    Article  CAS  Google Scholar 

  10. Hu, Y. et al. Proc. Natl. Acad. Sci. USA 100, 845–849 (2003).

    Article  CAS  Google Scholar 

  11. Ge, C., Georgiev, A., Öhman, A., Wieslander, Å. & Kelly, A.A. J. Biol. Chem. 286, 6669–6684 (2011).

    Article  CAS  Google Scholar 

  12. Schmidt, H. et al. Proc. Natl. Acad. Sci. USA 109, 6253–6258 (2012).

    Article  CAS  Google Scholar 

  13. Rebecchi, M.J., Eberhardt, R., Delaney, T., Ali, S. & Bittman, R. J. Biol. Chem. 268, 1735–1741 (1993).

    CAS  PubMed  Google Scholar 

  14. Lindeberg, M.I., Zakharov, S.D. & Cramer, W.A.J. Mol. Biol. 295, 679–692 (2000).

    Article  CAS  Google Scholar 

  15. Mosbahi, K. et al. J. Biol. Chem. 279, 22145–22151 (2004).

    Article  CAS  Google Scholar 

  16. Tilley, S.J., Orlova, E.V., Gilbert, R.J., Andrew, P.W. & Saibil, H.R. Cell 121, 247–256 (2005).

    Article  CAS  Google Scholar 

  17. le Maire, A. et al. Nat. Struct. Mol. Biol. 17, 801–807 (2010).

    Article  CAS  Google Scholar 

  18. Burmann, B.M. et al. Cell 150, 291–303 (2012).

    Article  CAS  Google Scholar 

  19. Lucast, L.J., Batey, R.T. & Doudna, J.A. Biotechniques 30, 544–546 (2001).

    Article  CAS  Google Scholar 

  20. Kabsch, W. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  21. McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  22. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  23. Blanc, E. et al. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004).

    Article  CAS  Google Scholar 

  24. Schaeffer, F. et al. Biochemistry 41, 2106–2114 (2002).

    Article  CAS  Google Scholar 

  25. Wiseman, T., Williston, S., Brandts, J.F. & Lin, L.N. Anal. Biochem. 179, 131–137 (1989).

    Article  CAS  Google Scholar 

  26. Fiske, C.H. & Subbarow, Y. J. Biol. Chem. 66, 375–400 (1925).

    CAS  Google Scholar 

  27. Montagner, C. et al. Biochemistry 46, 1878–1887 (2007).

    Article  CAS  Google Scholar 

  28. Wriggers, W. Biophys. Rev. 2, 21–27 (2010).

    Article  Google Scholar 

  29. Svergun, D.I., Barberato, C. & Koch, M.H.J. J. Appl. Crystallogr. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge A. Haouz and P. Weber (Institut Pasteur, France) for help with robotic crystallization; S. Lopez Fernandez and P. Arrasate (Structural Glycobiology Group, Unit of Biophysics, Spain) for technical assistance; and the European Synchrotron Radiation Facility (ESRF), the French National Synchrotron SOLEIL, the Diamond Light Source (DLS) and the Swiss Light Source (SLS) for granting access to synchrotron radiation facilities and their staff for the onsite assistance. We specially thank the BioStruct-X project to support access to structural biology facilities. Technical support provided by Universidad del País Vasco/Euskal Herriko Unibertsitatea and Ministerio de Ciencia e Innovación is acknowledged. We also thank all members of the Structural Glycobiology Group for valuable scientific discussions. This work was supported by the European Community's Sixth and Seventh Framework Programmes (contracts LSHP-CT-2005-018923 and HEALTH-F3-2011-260872), the Institut Pasteur, the Spanish Ministry of Science and Innovation (contracts SAF2010-19096 and BIO2013-49022-C2-2-R), IKERBASQUE, the Basque Foundation for Science, the Basque Government and the Fundación Biofísica Bizkaia.

Author information

Authors and Affiliations

Authors

Contributions

M.E.G. and P.M.A. conceived the project. D.G., D.A.-J. and M.B. performed the crystallographic studies. S.U., A.R.-U., M.A.M., N.B. and N.C. prepared and characterized wild-type PimA and the different mutants. D.G., M.A.M., M.B., A.C., M.E.G. & P.M.A. analyzed the results. D.G., A.C., M.E.G. & P.M.A. wrote the manuscript.

Corresponding authors

Correspondence to Marcelo E Guerin or Pedro M Alzari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–15 and Supplementary Table 1. (PDF 2845 kb)

Supplementary Video 1

Structural transition between the extended and compact conformational states of apo PimA (MPG 522 kb)

Supplementary Video 2

Structural transition between apo PimA and GDP-bound PimA involving the reshuffling of secondary structural elements from the N-terminal domain. (MPG 1520 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giganti, D., Albesa-Jové, D., Urresti, S. et al. Secondary structure reshuffling modulates glycosyltransferase function at the membrane. Nat Chem Biol 11, 16–18 (2015). https://doi.org/10.1038/nchembio.1694

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1694

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing