Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A new family of iron-dependent halogenases acts on freestanding substrates

Abstract

Regio- and stereospecific incorporation of a halogen atom to an unactivated sp3 carbon in a freestanding molecule is a challenging transformation that is currently missing in the inventory of enzyme-mediated reactions. Here we report what is to our knowledge the first example of a nonheme iron enzyme (WelO5) in the welwitindolinone biosynthetic pathway that can monochlorinate an aliphatic carbon in 12-epi-fischerindole U and 12-epi-hapalindole C, substrates that are free from peptidyl or acyl carrier protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected chlorinated and deschlorinated pairs of hapalindole-type molecules from two distinct stigonematalean cyanobacteria.
Figure 2: In vitro characterization of WelO5 and its mutant.

Similar content being viewed by others

References

  1. Gribble, G.W. Prog. Chem. Org. Nat. Prod. 91, 1–613 (2010).

    CAS  Google Scholar 

  2. Harris, C.M., Kannan, R., Kopecka, H. & Harris, T.M. J. Am. Chem. Soc. 107, 6652–6658 (1985).

    Article  CAS  Google Scholar 

  3. Williams, P.G. et al. J. Org. Chem. 70, 6196–6203 (2005).

    Article  CAS  Google Scholar 

  4. Insall, R. & Kay, R.R. EMBO J. 9, 3323–3328 (1990).

    Article  CAS  Google Scholar 

  5. Vaillancourt, F.H., Yeh, E., Vosburg, D.A., Garneau-Tsodikova, S. & Walsh, C.T. Chem. Rev. 106, 3364–3378 (2006).

    Article  CAS  Google Scholar 

  6. Carter-Franklin, J.N. & Butler, A. J. Am. Chem. Soc. 126, 15060–15066 (2004).

    Article  CAS  Google Scholar 

  7. Bernhardt, P., Okino, T., Winter, J.M., Miyanaga, A. & Moore, B.S. J. Am. Chem. Soc. 133, 4268–4270 (2011).

    Article  CAS  Google Scholar 

  8. Kirner, S. et al. J. Bacteriol. 180, 1939–1943 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Neumann, C.S., Walsh, C.T. & Kay, R.R. Proc. Natl. Acad. Sci. USA 107, 5798–5803 (2010).

    Article  CAS  Google Scholar 

  10. Podust, L.M. & Sherman, D.H. Nat. Prod. Rep. 29, 1251–1266 (2012).

    Article  CAS  Google Scholar 

  11. Bhat, V., Dave, A., MacKay, J.A. & Rawal, V.H. Alkaloids Chem. Biol. 73, 65–160 (2014).

    Article  CAS  Google Scholar 

  12. Park, A., Moore, R.E. & Patterson, G.M.L. Tetrahedr. Lett. 33, 3257–3260 (1992).

    Article  CAS  Google Scholar 

  13. Stratmann, K. et al. J. Am. Chem. Soc. 116, 9935–9942 (1994).

    Article  CAS  Google Scholar 

  14. Hillwig, M.L., Zhu, Q. & Liu, X. ACS Chem. Biol. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  15. Hillwig, M.L. et al. ChemBioChem 15, 665–669 (2014).

    Article  CAS  Google Scholar 

  16. Vaillancourt, F.H., Yin, J. & Walsh, C.T. Proc. Natl. Acad. Sci. USA 102, 10111–10116 (2005).

    Article  CAS  Google Scholar 

  17. Vaillancourt, F.H., Yeh, E., Vosburg, D.A., O'Connor, S.E. & Walsh, C.T. Nature 436, 1191–1194 (2005).

    Article  CAS  Google Scholar 

  18. Galonić, D.P., Vaillancourt, F.H. & Walsh, C.T. J. Am. Chem. Soc. 128, 3900–3901 (2006).

    Article  Google Scholar 

  19. Ueki, M. et al. Chem. Biol. 13, 1183–1191 (2006).

    Article  CAS  Google Scholar 

  20. Gu, L. et al. Nature 459, 731–735 (2009).

    Article  CAS  Google Scholar 

  21. Matthews, M.L. et al. Proc. Natl. Acad. Sci. USA 106, 17723–17728 (2009).

    Article  CAS  Google Scholar 

  22. Matthews, M.L. et al. Biochemistry 48, 4331–4343 (2009).

    Article  CAS  Google Scholar 

  23. Galonić, D.P., Barr, E.W., Walsh, C.T., Bollinger, J.M. Jr. & Krebs, C. Nat. Chem. Biol. 3, 113–116 (2007).

    Article  Google Scholar 

  24. Khare, D. et al. Proc. Natl. Acad. Sci. USA 107, 14099–14104 (2010).

    Article  CAS  Google Scholar 

  25. Blasiak, L.C., Vaillancourt, F.H., Walsh, C.T. & Drennan, C.L. Nature 440, 368–371 (2006).

    Article  CAS  Google Scholar 

  26. Moore, R.E. et al. J. Org. Chem. 52, 1036–1043 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by University of Pittsburgh–Department of Chemistry startup fund.

Author information

Authors and Affiliations

Authors

Contributions

M.L.H. and X.L. designed the study. M.L.H. performed all experiments. M.L.H. and X.L. analyzed the data. X.L. wrote the manuscript with input from M.L.H.

Corresponding author

Correspondence to Xinyu Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–16. (PDF 3946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillwig, M., Liu, X. A new family of iron-dependent halogenases acts on freestanding substrates. Nat Chem Biol 10, 921–923 (2014). https://doi.org/10.1038/nchembio.1625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1625

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing