Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis

Abstract

Despite intensive research, the cyclodehydratase responsible for azoline biogenesis in thiazole/oxazole-modified microcin (TOMM) natural products remains enigmatic. The collaboration of two proteins, C and D, is required for cyclodehydration. The C protein is homologous to E1 ubiquitin-activating enzymes, whereas the D protein is within the YcaO superfamily. Recent studies have demonstrated that TOMM YcaOs phosphorylate amide carbonyl oxygens to facilitate azoline formation. Here we report the X-ray crystal structure of an uncharacterized YcaO from Escherichia coli (Ec-YcaO). Ec-YcaO harbors an unprecedented fold and ATP-binding motif. This motif is conserved among TOMM YcaOs and is required for cyclodehydration. Furthermore, we demonstrate that the C protein regulates substrate binding and catalysis and that the proline-rich C terminus of the D protein is involved in C protein recognition and catalysis. This study identifies the YcaO active site and paves the way for the characterization of the numerous YcaO domains not associated with TOMM biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: YcaO gene clusters and characterized roles of YcaO proteins.
Figure 2: Structure of Ec-YcaO and ATP-binding residues of Ec-YcaO.
Figure 3: Conservation of the Ec-YcaO ATP-binding residues in the superfamily.
Figure 4: BalhC modulates ATP binding and hydrolysis by BalhD and is responsible for leader peptide binding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Strader, M.B. et al. A proteomic and transcriptomic approach reveals new insight into β-methylthiolation of Escherichia coli ribosomal protein S12. Mol. Cell. Proteomics 10, M110005199 (2011).

    Article  Google Scholar 

  2. Tenorio, E. et al. Systematic characterization of Escherichia coli genes/ORFs affecting biofilm formation. FEMS Microbiol. Lett. 225, 107–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Melby, J.O., Nard, N.J. & Mitchell, D.A. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr. Opin. Chem. Biol. 15, 369–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arnison, P.G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Molloy, E.M., Cotter, P.D., Hill, C., Mitchell, D.A. & Ross, R.P. Streptolysin S-like virulence factors: the continuing sagA. Nat. Rev. Microbiol. 9, 670–681 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, Y.M., Milne, J.C., Madison, L.L., Kolter, R. & Walsh, C.T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274, 1188–1193 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Dunbar, K.L., Melby, J.O. & Mitchell, D.A. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat. Chem. Biol. 8, 569–575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koehnke, J. et al. The cyanobactin heterocyclase enzyme: a processive adenylase that operates with a defined order of reaction. Angew. Chem. Int. Ed. Engl. 52, 13991–13996 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, S.W. et al. Discovery of a widely distributed toxin biosynthetic gene cluster. Proc. Natl. Acad. Sci. USA 105, 5879–5884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmidt, E.W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA 102, 7315–7320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McIntosh, J.A. & Schmidt, E.W. Marine molecular machines: heterocyclization in cyanobactin biosynthesis. ChemBioChem 11, 1413–1421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Milne, J.C. et al. Cofactor requirements and reconstitution of microcin B17 synthetase: a multienzyme complex that catalyzes the formation of oxazoles and thiazoles in the antibiotic microcin B17. Biochemistry 38, 4768–4781 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Milne, J.C., Eliot, A.C., Kelleher, N.L. & Walsh, C.T. ATP/GTP hydrolysis is required for oxazole and thiazole biosynthesis in the peptide antibiotic microcin B17. Biochemistry 37, 13250–13261 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Schulman, B.A. & Harper, J.W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitchell, D.A. et al. Structural and functional dissection of the heterocyclic peptide cytotoxin streptolysin S. J. Biol. Chem. 284, 13004–13012 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dunbar, K.L. & Mitchell, D.A. Insights into the mechanism of peptide cyclodehydrations achieved through the chemoenzymatic generation of amide derivatives. J. Am. Chem. Soc. 135, 8692–8701 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huo, L., Rachid, S., Stadler, M., Wenzel, S.C. & Muller, R. Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem. Biol. 19, 1278–1287 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Hou, Y. et al. Structure and biosynthesis of the antibiotic bottromycin D. Org. Lett. 14, 5050–5053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gomez-Escribano, J.P., Song, L., Bibb, M.J. & Challis, G.L. Posttranslational β-methylation and macrolactamidination in the biosynthesis of the bottromycin complex of ribosomal peptide antibiotics. Chem. Sci. 3, 3522–3525 (2012).

    Article  CAS  Google Scholar 

  20. Crone, W.J.K., Leeper, F.J. & Truman, A.W. Identification and characterization of the gene cluster for the anti-MRSA antibiotic bottromycin: expanding the biosynthetic diverstiy of ribosomal peptides. Chem. Sci. 3, 3516–3521 (2012).

    Article  CAS  Google Scholar 

  21. Breil, B.T., Ludden, P.W. & Triplett, E.W. DNA sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin. J. Bacteriol. 175, 3693–3702 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Webb, M.R. A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc. Natl. Acad. Sci. USA 89, 4884–4887 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hunter, S. et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 40, D306–D312 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Breil, B., Borneman, J. & Triplett, E.W. A newly discovered gene, tfuA, involved in the production of the ribosomally synthesized peptide antibiotic trifolitoxin. J. Bacteriol. 178, 4150–4156 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oman, T.J. & van der Donk, W.A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol. 6, 9–18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Melby, J.O., Dunbar, K.L., Trinh, N.Q. & Mitchell, D.A. Selectivity, directionality, and promiscuity in peptide processing from a Bacillus sp. Al Hakam cyclodehydratase. J. Am. Chem. Soc. 134, 5309–5316 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Denessiouk, K.A. & Johnson, M.S. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families. Proteins 38, 310–326 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y., Morar, M. & Ealick, S.E. Structural biology of the purine biosynthetic pathway. Cell. Mol. Life Sci. 65, 3699–3724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fawaz, M.V., Topper, M.E. & Firestine, S.M. The ATP-grasp enzymes. Bioorg. Chem. 39, 185–191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rakus, J.F. et al. Evolution of enzymatic activities in the enolase superfamily: d-mannonate dehydratase from Novosphingobium aromaticivorans. Biochemistry 46, 12896–12908 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, W., Biswas, T., Porter, V.R., Tsodikov, O.V. & Garneau-Tsodikova, S. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc. Natl. Acad. Sci. USA 108, 9804–9808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Selvy, P.E., Lavieri, R.R., Lindsley, C.W. & Brown, H.A. Phospholipase D: enzymology, functionality, and chemical modulation. Chem. Rev. 111, 6064–6119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bhatnagar, R.S., Futterer, K., Waksman, G. & Gordon, J.I. The structure of myristoyl-CoA:protein N-myristoyltransferase. Biochim. Biophys. Acta 1441, 162–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Climie, S.C., Carreras, C.W. & Santi, D.V. Complete replacement set of amino acids at the C terminus of thymidylate synthase: quantitative structure-activity relationship of mutants of an enzyme. Biochemistry 31, 6032–6038 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Regni, C.A. et al. How the MccB bacterial ancestor of ubiquitin E1 initiates biosynthesis of the microcin C7 antibiotic. EMBO J. 28, 1953–1964 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Donia, M.S. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol. 2, 729–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Izawa, M., Kawasaki, T. & Hayakawa, Y. Cloning and heterologous expression of the thioviridamide biosynthesis gene cluster from Streptomyces olivoviridis. Appl. Environ. Microbiol. 79, 7110–7113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Atkinson, H.J., Morris, J.H., Ferrin, T.E. & Babbitt, P.C. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS ONE 4, e4345 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Laskowski, R.A. & Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bond, C.S. & Schuttelkopf, A.W. ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. Acta Crystallogr. D Biol. Crystallogr. 65, 510–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Langer, G., Cohen, S.X., Lamzin, V.S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Vagin, A.A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D Biol. Crystallogr. 60, 2184–2195 (2004).

    Article  PubMed  Google Scholar 

  53. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Deane and K. Taylor for the generation of select BalhD mutants and J. Melby for assistance with collecting MS/MS data. This work was supported by the US National Institutes of Health (NIH) (1R01 GM097142 to D.A.M., 1R01 GM102602 to S.K.N. and 2T32 GM070421 to K.L.D., B.J.B. and J.R.C.). Additional support was from the Harold R. Snyder Fellowship (University of Illinois at Urbana-Champaign (UIUC) Department of Chemistry to K.L.D.), the Robert C. and Carolyn J. Springborn Endowment (UIUC Department of Chemistry to B.J.B.), the National Science Foundation Graduate Research Fellowship (DGE-1144245 to B.J.B.) and the University of Illinois Distinguished Fellowship (UIUC Graduate College to J.R.C.) The Bruker UltrafleXtreme MALDI TOF/TOF mass spectrometer was purchased in part with a grant from the NIH–National Center for Research Resources (S10 RR027109 A).

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by D.A.M., S.K.N., K.L.D., J.R.C., C.L.C. and B.J.B. and were performed by K.L.D., J.R.C., C.L.C. and B.J.B. The manuscript was written by D.A.M., K.L.D. and J.R.C. with critical editorial input from S.K.N., C.L.C. and B.J.B. The overall study was conceived and managed by D.A.M. with S.K.N. overseeing all aspects of protein structure determination.

Corresponding authors

Correspondence to Satish K Nair or Douglas A Mitchell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–27. (PDF 16297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunbar, K., Chekan, J., Cox, C. et al. Discovery of a new ATP-binding motif involved in peptidic azoline biosynthesis. Nat Chem Biol 10, 823–829 (2014). https://doi.org/10.1038/nchembio.1608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1608

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing