Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification

Abstract

We report that 4-(3-(benzyloxy)phenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), which behaves as a positive allosteric modulator at the glucagon-like peptide-1 receptor (GLP-1R), covalently modifies cysteines 347 and 438 in GLP-1R. C347, located in intracellular loop 3 of GLP-1R, is critical to the activity of BETP and a structurally distinct GLP-1R ago-allosteric modulator, N-(tert-butyl)-6,7-dichloro-3-(methylsulfonyl)quinoxalin-2-amine. We further show that substitution of cysteine for phenylalanine 345 in the glucagon receptor is sufficient to confer sensitivity to BETP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GLP-1R is covalently modified by BETP.
Figure 2: Mutant receptors alter BETP sensitivity.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Baggio, L.L. & Drucker, D.J. Best Pract. Res., Clin. Endocrinol. Metab. 18, 531–554 (2004).

    Article  CAS  Google Scholar 

  2. Willard, F.S. & Sloop, K.W. Exp. Diabetes Res. 2012, 470851 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Quoyer, J. et al. J. Biol. Chem. 285, 1989–2002 (2010).

    Article  CAS  Google Scholar 

  4. Koole, C. et al. Mol. Pharmacol. 78, 456–465 (2010).

    Article  CAS  Google Scholar 

  5. Verges, B., Bonnard, C. & Renard, E. Diabetes Metab. 37, 477–488 (2011).

    Article  CAS  Google Scholar 

  6. Willard, F.S., Bueno, A.B. & Sloop, K.W. Exp. Diabetes Res. 2012, 709893 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. Li, N., Lu, J. & Willars, G.B. PLoS ONE 7, e47936 (2012).

    Article  CAS  Google Scholar 

  8. Teng, M. et al. Bioorg. Med. Chem. Lett. 17, 5472–5478 (2007).

    Article  CAS  Google Scholar 

  9. Willard, F.S. et al. Mol. Pharmacol. 82, 1066–1073 (2012).

    Article  CAS  Google Scholar 

  10. Wootten, D. et al. Mol. Pharmacol. 82, 281–290 (2012).

    Article  CAS  Google Scholar 

  11. Sloop, K.W. et al. Diabetes 59, 3099–3107 (2010).

    Article  CAS  Google Scholar 

  12. Eng, H. et al. Drug Metab. Dispos. 41, 1470–1479 (2013).

    Article  CAS  Google Scholar 

  13. Baggio, L.L., Kim, J.-G. & Drucker, D.J. Diabetes 53, S205–S214 (2004).

    Article  CAS  Google Scholar 

  14. Kim, W. & Egan, J.M. Pharmacol. Rev. 60, 470–512 (2008).

    Article  CAS  Google Scholar 

  15. Takata, Y., Webster, N.J. & Olefsky, J.M. J. Biol. Chem. 266, 9135–9139 (1991).

    CAS  PubMed  Google Scholar 

  16. Mathi, S.K., Chan, Y., Li, X. & Wheeler, M.B. Mol. Endocrinol. 11, 424–432 (1997).

    Article  CAS  Google Scholar 

  17. Underwood, C.R., Knudsen, L.B., Garibay, P.W., Peters, G.H. & Reedtz-Runge, S. Peptides 49C, 100–108 (2013).

    Article  Google Scholar 

  18. Wootten, D. et al. Mol. Pharmacol. 83, 822–834 (2013).

    Article  CAS  Google Scholar 

  19. Vazquez, P., Roncero, I., Blazquez, E. & Alvarez, E. J. Endocrinol. 185, 35–44 (2005).

    Article  CAS  Google Scholar 

  20. Hinke, S.A. et al. J. Biol. Chem. 275, 3827–3834 (2000).

    Article  CAS  Google Scholar 

  21. Siu, F.Y. et al. Nature 499, 444–449 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank X. Chen, Y. Cao and K. Fennell (Worldwide Medicinal Chemistry, Pfizer PharmaTherapeutics Research and Development) for advice, constructs and preliminary experiments.

Author information

Authors and Affiliations

Authors

Contributions

W.M.N. conducted all of the experiments and analyzed the data. W.M.N., B.D.S., G.E.A. and C.L. designed PETP and developed a synthetic route for its preparation. W.M.N., J.-P.F., B.D.S., D.A.G., R.B.R., A.M.M., D.H. and P.A.C. conceived the experiments. W.M.N. and L.R.H. developed MS methods for identifying the site (or sites) at which BETP modifies GLP-1R. W.M.N. and P.A.C. wrote the paper.

Corresponding author

Correspondence to Philip A Carpino.

Ethics declarations

Competing interests

Declaration: W.N., J.-P.F., G.A., D.G., L.H., R.R., A.M., C.L., D.H. and P.C. are employees of Pfizer. The research was fully funded by Pfizer.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–14 and Supplementary Table 1. (PDF 1307 kb)

Supplementary Data Set 1

BETP inhibitory activity across 64 proteins (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nolte, W., Fortin, JP., Stevens, B. et al. A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification. Nat Chem Biol 10, 629–631 (2014). https://doi.org/10.1038/nchembio.1581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing