Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center

Abstract

The Watson-Crick base pairs between the 3′-terminal end of tRNAs and ribosomal RNA in the peptidyl transferase center are universally conserved. Here, we report that the introduction of compensatory mutations to Escherichia coli RNAs in this site leads to an orthogonal system independent of the wild-type counterpart, as demonstrated via the production of two peptide sequences from a single mRNA. This work thus identifies a new way to reprogram the genetic code.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Base pair interaction of the 3′ end of tRNAs with 23S rRNA.
Figure 2: Translational activity of pairs of ribosome and tRNA mutants.
Figure 3: Simultaneous expression of two distinct peptides from a single mRNA sequence under two artificially programmed genetic codes.

Similar content being viewed by others

References

  1. Bashan, A. et al. Mol. Cell 11, 91–102 (2003).

    Article  CAS  Google Scholar 

  2. Hansen, J.L., Schmeing, T.M., Moore, P.B. & Steitz, T.A. Proc. Natl. Acad. Sci. USA 99, 11670–11675 (2002).

    Article  CAS  Google Scholar 

  3. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  4. Steitz, T.A. Nat. Rev. Mol. Cell Biol. 9, 242–253 (2008).

    Article  CAS  Google Scholar 

  5. Moazed, D. & Noller, H.F. Proc. Natl. Acad. Sci. USA 88, 3725–3728 (1991).

    Article  CAS  Google Scholar 

  6. Samaha, R.R., Green, R. & Noller, H.F. Nature 377, 309–314 (1995).

    Article  CAS  Google Scholar 

  7. Lescoute, A. & Westhof, E. Nucleic Acids Res. 34, 6587–6604 (2006).

    Article  CAS  Google Scholar 

  8. Green, R., Switzer, C. & Noller, H.F. Science 280, 286–289 (1998).

    Article  CAS  Google Scholar 

  9. Kim, D.F. & Green, R. Mol. Cell 4, 859–864 (1999).

    Article  CAS  Google Scholar 

  10. Cavarelli, J. & Moras, D. FASEB J. 7, 79–86 (1993).

    Article  CAS  Google Scholar 

  11. Ruff, M. et al. Science 252, 1682–1689 (1991).

    Article  CAS  Google Scholar 

  12. Schulman, L.H. & Pelka, H. Biochemistry 16, 4256–4265 (1977).

    Article  CAS  Google Scholar 

  13. Liu, M. & Horowitz, J. Proc. Natl. Acad. Sci. USA 91, 10389–10393 (1994).

    Article  CAS  Google Scholar 

  14. Zhou, X.L. et al. Nucleic Acids Res. 39, 8857–8868 (2011).

    Article  CAS  Google Scholar 

  15. Murakami, H., Ohta, A., Ashigai, H. & Suga, H. Nat. Methods 3, 357–359 (2006).

    Article  CAS  Google Scholar 

  16. Ohuchi, M., Murakami, H. & Suga, H. Curr. Opin. Chem. Biol. 11, 537–542 (2007).

    Article  CAS  Google Scholar 

  17. Xiao, H., Murakami, H., Suga, H. & Ferré-D'Amaré, A.R. Nature 454, 358–361 (2008).

    Article  CAS  Google Scholar 

  18. Saito, H., Kourouklis, D. & Suga, H. EMBO J. 20, 1797–1806 (2001).

    Article  CAS  Google Scholar 

  19. Ohta, A., Murakami, H., Higashimura, E. & Suga, H. Chem. Biol. 14, 1315–1322 (2007).

    Article  CAS  Google Scholar 

  20. Kawakami, T. et al. Nat. Chem. Biol. 5, 888–890 (2009).

    Article  CAS  Google Scholar 

  21. Goto, Y., Katoh, T. & Suga, H. Nat. Protoc. 6, 779–790 (2011).

    Article  CAS  Google Scholar 

  22. Youngman, E.M. & Green, R. Methods 36, 305–312 (2005).

    Article  CAS  Google Scholar 

  23. Sako, Y., Morimoto, J., Murakami, H. & Suga, H. J. Am. Chem. Soc. 130, 7232–7234 (2008).

    Article  CAS  Google Scholar 

  24. Kao, C., Zheng, M. & Rüdisser, S. RNA 5, 1268–1272 (1999).

    Article  CAS  Google Scholar 

  25. Doi, Y., Ohtsuki, T., Shimizu, Y., Ueda, T. & Sisido, M. J. Am. Chem. Soc. 129, 14458–14462 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Green for the gift of a ribosome construct linked to the MS2 tag. This work was supported by Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Specially Promoted Research (21000005) and the Japan Science and Technology Agency (JST) Core Research for Evolutional Science and Technology (CREST) of Molecular Technology to H.S. N.T. (24-8188) and G.H. (21-9361) are supported by Grants-in-Aid for JSPS Fellows. T.K. is supported by a JSPS Grant-in-Aid for Young Scientists (A) (24681047) and a JST Rising Star Award of Molecular Technology.

Author information

Authors and Affiliations

Authors

Contributions

N.T. and G.H. conducted biochemical and chemical studies, and T.K. and H.S. supervised the research. All of the authors contributed to writing the manuscript.

Corresponding author

Correspondence to Hiroaki Suga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results. (PDF 6948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terasaka, N., Hayashi, G., Katoh, T. et al. An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center. Nat Chem Biol 10, 555–557 (2014). https://doi.org/10.1038/nchembio.1549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing