Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

Abstract

Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense activator. Here we describe a mutant of Arabidopsis thaliana that is impaired in BABA-induced disease immunity (ibi1) but is hypersensitive to BABA-induced growth repression. IBI1 encodes an aspartyl-tRNA synthetase. Enantiomer-specific binding of the R enantiomer of BABA to IBI1 primed the protein for noncanonical defense signaling in the cytoplasm after pathogen attack. This priming was associated with aspartic acid accumulation and tRNA-induced phosphorylation of translation initiation factor eIF2α. However, mutation of eIF2α-phosphorylating GCN2 kinase did not affect BABA-induced immunity but relieved BABA-induced growth repression. Hence, BABA-activated IBI1 controls plant immunity and growth via separate pathways. Our results open new opportunities to separate broad-spectrum disease resistance from the associated costs on plant growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and characterization of the Arabidopsis ibi1 mutant.
Figure 2: Characterization of the defense function of IBI1.
Figure 3: Enantiomer-specific activity of BABA to IBI1.
Figure 4: BABA interferes with canonical AspRS activity.
Figure 5: Genetic separation of BABA-IR and growth repression.
Figure 6: The BABA receptor IBI1 controls BABA-IR and plant growth suppression via separate pathways.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Swiss-Prot

References

  1. Pieterse, C.M.J., Van der Does, D., Zamioudis, C., Leon-Reyes, A. & Van Wees, S.C.M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Pastor, V., Luna, E., Mauch-Mani, B., Ton, J. & Flors, V. Primed plants do not forget. Environ. Exp. Bot. 94, 46–56 (2013).

    Article  CAS  Google Scholar 

  4. Kohler, A., Schwindling, S. & Conrath, U. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol. 128, 1046–1056 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jung, H.W., Tschaplinski, T.J., Wang, L., Glazebrook, J. & Greenberg, J.T. Priming in systemic plant immunity. Science 324, 89–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. van Hulten, M., Pelser, M., van Loon, L., Pieterse, C.M.J. & Ton, J. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 103, 5602–5607 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walters, D. & Heil, M. Costs and trade-offs associated with induced resistance. Physiol. Mol. Plant Pathol. 71, 3–17 (2007).

    Article  CAS  Google Scholar 

  8. Ahmad, S., Gordon-Weeks, R., Pickett, J. & Ton, J. Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Mol. Plant Pathol. 11, 817–827 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Conrath, U. Molecular aspects of defence priming. Trends Plant Sci. 16, 524–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Luna, E., Bruce, T.J.A., Roberts, M.R., Flors, V. & Ton, J. Next-generation systemic acquired resistance. Plant Physiol. 158, 844–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Slaughter, A. et al. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158, 835–843 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Beckers, G.J.M. & Conrath, U. Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10, 425–431 (2007).

    Article  PubMed  Google Scholar 

  13. Gao, Q.M., Kachroo, A. & Kachroo, P. Chemical inducers of systemic immunity in plants. J. Exp. Bot. 10.1093/jxb/eru010 (2014).

  14. Walters, D.R., Ratsep, J. & Havis, N.D. Controlling crop diseases using induced resistance: challenges for the future. J. Exp. Bot. 64, 1263–1280 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Cohen, Y.R. β-aminobutyric acid–induced resistance against plant pathogens. Plant Dis. 86, 448–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Zimmerli, L., Jakab, G., Métraux, J.-P. & Mauch-Mani, B. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97, 12920–12925 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ton, J. et al. Dissecting the β-aminobutyric acid–induced priming phenomenon in Arabidopsis. Plant Cell 17, 987–999 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh, P. et al. The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 24, 1256–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Návarová, H., Bernsdorff, F., Döring, A.-C. & Zeier, J. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity 24, 5123–5141 (2012).

  20. Ton, J. & Mauch-Mani, B. β-amino-butyric acid–induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 38, 119–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Van der Ent, S. et al. Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation. New Phytol. 183, 419–431 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, C.-C., Singh, P., Chen, M.-C. & Zimmerli, L. L-Glutamine inhibits β-aminobutyric acid–induced stress resistance and priming in Arabidopsis. J. Exp. Bot. 61, 995–1002 (2010).

    Article  PubMed  Google Scholar 

  23. Delaney, T.P. et al. A central role of salicylic acid in plant disease resistance. Science 266, 1247–1250 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Flors, V. et al. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54, 81–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Parker, J.E. et al. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 9, 879–894 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bell, C.J. & Ecker, J.R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19, 137–144 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Mauch-Mani, B. & Slusarenko, A.J. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8, 203–212 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo, M., Yang, X.L. & Schimmel, P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat. Rev. Mol. Cell Biol. 11, 668–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelson, B.K., Cai, X. & Nebenfuhr, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Duchêne, A.M. et al. Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102, 16484–16489 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen, Y. 3-Aminobutyric acid induces systemic resistance against Peronospore tabacina. Physiol. Mol. Plant Pathol. 44, 273–288 (1994).

    Article  CAS  Google Scholar 

  32. Silué, D., Pajot, E. & Cohen, Y. Induction of resistance to downy mildew (Peronospora parasitica) in cauliflower by DL-β-amino-n-butanoic acid (BABA). Plant Pathol. 51, 97–102 (2002).

    Article  Google Scholar 

  33. Cohen, Y., Rubin, A.E. & Kilfin, G. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). Eur. J. Plant Pathol. 126, 553–573 (2010).

    Article  CAS  Google Scholar 

  34. Cavarelli, J. et al. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 13, 327–337 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmitt, E. et al. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J. 17, 5227–5237 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shrift, A., Bechard, D. & Harcup, C. Utilization of selenocysteine by a cysteinyl-tRNA synthetase from Phaseolus aureus. Plant Physiol. 58, 248–252 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ulmasov, B., Topin, A., Chen, Z., He, S.H. & Folk, W.R. Identity elements and aminoacylation of plant tRNATrp. Nucleic Acids Res. 26, 5139–5141 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lloyd, A.J., Thomann, H.U., Ibba, M. & Soll, D. A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity. Nucleic Acids Res. 23, 2886–2892 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cestari, I. & Stuart, K. A spectrophotometric assay for quantitative measurement of aminoacyl-tRNA synthetase activity. J. Biomol. Screen. 18, 490–497 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Dever, T.E. & Hinnebusch, A.G. GCN2 whets the appetite for amino acids. Mol. Cell 18, 141–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Li, M.W., AuYeung, W.K. & Lam, H.M. The GCN2 homologue in Arabidopsis thaliana interacts with uncharged tRNA and uses Arabidopsis eIF2α molecules as direct substrates. Plant Biol. 15, 13–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Y. et al. GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis. J. Exp. Bot. 59, 3131–3141 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Holub, E.B., Beynon, L.J. & Crute, I.R. Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana. Mol. Plant Microbe Interact. 7, 223–239 (1994).

    Article  CAS  Google Scholar 

  44. Guo, M. & Schimmel, P. Essential nontranslational functions of tRNA synthetases. Nat. Chem. Biol. 9, 145–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ko, Y.-G. et al. Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J. Biol. Chem. 276, 6030–6036 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Frye, C.A., Tang, D. & Innes, R.W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 98, 373–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Kong, Q. et al. The MEKK1–MKK1/MKK2–MPK4 kinase cascade negatively regulates immunity mediated by a mitogen-activated protein kinase kinase kinase in Arabidopsis. Plant Cell 24, 2225–2236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo, M., Yang, X.L. & Schimmel, P. New functions of aminoacyl-tRNA synthetases beyond translation. Nat. Rev. Mol. Cell Biol. 11, 668–674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, Y., Schumaker, K. & Zhu, J.-K. in Arabidopsis Protocols Vol. 323 (eds. Salinas, J. & Sanchez-Serrano, J.) 101–103 (Humana Press, 2006).

  50. Audenaert, K., De Meyer, G.B. & Hofte, M.M. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid–dependent signaling mechanisms. Plant Physiol. 128, 491–501 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Earley, K.W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Lin, J.J. Optimization of the transformation efficiency of Agrobacterium tumefaciens cells using electroporation. Plant Sci. 101, 11–15 (1994).

    Article  CAS  Google Scholar 

  53. Clough, S.J. & Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Berkowitz, O., Jost, R., Pollmann, S. & Masle, J. Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell 20, 3430–3447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pétriacq, P. et al. Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1. Plant J. 70, 650–665 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K. & Scheible, W.R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Accelrys Software Inc., Discovery Studio Modeling Environment, Release 3.5 (San Diego, Accelrys Software Inc., 2012).

  58. Wu, G., Robertson, D.H., Brooks, C.L. & Vieth, M. Detailed analysis of grid-based molecular docking: a case study of CDOCKER—A CHARMm-based MD docking algorithm. J. Comput. Chem. 24, 1549–1562 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. van Wees, N. Halford, J. Lucas, J. Pickett, I. Feussner, X. Zhang, W. Kegge, D. Acoska, M. Roberts, V. Pastor, J. Gamir and B. Mauch-Mani for fruitful discussions, practical assistance and/or helpful feedback. Arabidopsis NahG B15 and Ler rpp5 seeds were kindly provided by J. Ryals (Research Triangle Park, USA) and J. Parker (Max Planck Institute, Cologne), respectively. The research was supported by a VENI grant to J.T. (no. 863.04.019) from the Netherlands Organisation of Scientific Research (NWO), a Biotechnology and Biological Sciences Research Council Institute Career Path Fellowship (no. BB/E023959/1) to J.T., a consolidator grant from the European Research Council (no. 309944-Prime-A-Plant) to J.T., a Research Leadership Award from the Leverhulme Trust (no. RL-2012-042) to J.T., European Union Seventh Framework Programme (FP7/2007-2013; n°265865-PURE) to J.T., a grant from the Felix Thornley Cobbold Agricultural Trust to J.T. and E.L. and a VICI grant (no. 865.04.002) to C.M.J.P. from NWO.

Author information

Authors and Affiliations

Authors

Contributions

J.T. designed and supervised the research plan, performed experiments (mutant screen, map-based cloning, construction of transgenic lines, RT-qPCR and bioassays) and wrote the manuscript. E.L. performed experiments (map-based cloning, construction of transgenic lines, RT-qPCR, bioassays, confocal microscopy and IP assays), wrote the manuscript and provided intellectual input. M.v.H. performed experiments (mutant screen and bioassays) and provided intellectual input. Y.Z. performed experiments (map-based cloning and RT-qPCR) and provided intellectual input. O.B. performed experiments (GCN2 activity assays) and provided intellectual input. A.L. performed experiments (confocal microscopy and IP assays). P.P. performed experiments (MS). M.A.S. did computational modeling. B.C. did computational modeling and provided intellectual input. M.B. provided intellectual input. A.v.d.M. performed experiments (confocal microscopy). C.M.J.P. provided intellectual input. V.F. performed experiments (bioassays) and provided intellectual input.

Corresponding author

Correspondence to Jurriaan Ton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–16 and Supplementary Tables 1 and 2. (PDF 17925 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luna, E., van Hulten, M., Zhang, Y. et al. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nat Chem Biol 10, 450–456 (2014). https://doi.org/10.1038/nchembio.1520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing