Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A selective USP1–UAF1 inhibitor links deubiquitination to DNA damage responses

Abstract

Protein ubiquitination and deubiquitination are central to the control of a large number of cellular pathways and signaling networks in eukaryotes. Although the essential roles of ubiquitination have been established in the eukaryotic DNA damage response, the deubiquitination process remains poorly defined. Chemical probes that perturb the activity of deubiquitinases (DUBs) are needed to characterize the cellular function of deubiquitination. Here we report ML323 (2), a highly potent inhibitor of the USP1–UAF1 deubiquitinase complex with excellent selectivity against human DUBs, deSUMOylase, deneddylase and unrelated proteases. Using ML323, we interrogated deubiquitination in the cellular response to UV- and cisplatin-induced DNA damage and revealed new insights into the requirement of deubiquitination in the DNA translesion synthesis and Fanconi anemia pathways. Moreover, ML323 potentiates cisplatin cytotoxicity in non–small cell lung cancer and osteosarcoma cells. Our findings point to USP1–UAF1 as a key regulator of the DNA damage response and a target for overcoming resistance to the platinum-based anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ML323 is a potent USP1–UAF1 inhibitor through a mixed inhibition mechanism.
Figure 2: Selective inhibition of USP1 by ML323 revealed by DUB profiling.
Figure 3: ML323 inhibits the cellular activity of USP1–UAF1 and sensitizes cisplatin-resistant cells to cisplatin killing.
Figure 4: The effect of inhibiting USP1–UAF1 by ML323 in the TLS and FA pathways.
Figure 5: Inhibition of USP1–UAF1 by ML323 decreases HR and SCE in U2OS cells.
Figure 6: ML323 inhibits the deubiquitination by USP1–UAF1 in the TLS and FA pathways in response to DNA damage.

Similar content being viewed by others

References

  1. Chen, Z.J. & Sun, L.J. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33, 275–286 (2009).

    CAS  PubMed  Google Scholar 

  2. Amerik, A.Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).

    CAS  PubMed  Google Scholar 

  3. Nijman, S.M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    CAS  PubMed  Google Scholar 

  4. Fraile, J.M., Quesada, V., Rodriguez, D., Freije, J.M. & Lopez-Otin, C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31, 2373–2388 (2012).

    CAS  PubMed  Google Scholar 

  5. Wang, W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat. Rev. Genet. 8, 735–748 (2007).

    CAS  PubMed  Google Scholar 

  6. Kim, H. & D'Andrea, A.D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26, 1393–1408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Crossan, G.P. & Patel, K.J. The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA. J. Pathol. 226, 326–337 (2012).

    CAS  PubMed  Google Scholar 

  8. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141 (2002).

    CAS  PubMed  Google Scholar 

  9. Stelter, P. & Ulrich, H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191 (2003).

    CAS  PubMed  Google Scholar 

  10. Chen, J., Bozza, W. & Zhuang, Z. Ubiquitination of PCNA and its essential role in eukaryotic translesion synthesis. Cell Biochem. Biophys. 60, 47–60 (2011).

    PubMed  Google Scholar 

  11. Chang, D.J. & Cimprich, K.A. DNA damage tolerance: when it's OK to make mistakes. Nat. Chem. Biol. 5, 82–90 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Haracska, L., Torres-Ramos, C.A., Johnson, R.E., Prakash, S. & Prakash, L. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 4267–4274 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang, T.T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat. Cell Biol. 8, 339–347 (2006).

    CAS  PubMed  Google Scholar 

  14. Zhuang, Z. et al. Regulation of polymerase exchange between Polη and Polδ by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc. Natl. Acad. Sci. USA 105, 5361–5366 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, K.Y. et al. Human ELG1 regulates the level of ubiquitinated proliferating cell nuclear antigen (PCNA) through its interactions with PCNA and USP1. J. Biol. Chem. 285, 10362–10369 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, J.M. et al. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev. Cell 16, 314–320 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guervilly, J.H., Renaud, E., Takata, M. & Rosselli, F. USP1 deubiquitinase maintains phosphorylated CHK1 by limiting its DDB1-dependent degradation. Hum. Mol. Genet. 20, 2171–2181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bell, D.W. et al. Predisposition to cancer caused by genetic and functional defects of mammalian Atad5. PLoS Genet. 7, e1002245 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sowa, M.E., Bennett, E.J., Gygi, S.P. & Harper, J.W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Oestergaard, V.H. et al. Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol. Cell 28, 798–809 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, J. et al. Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem. Biol. 18, 1390–1400 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Post, R.M., Jimerson, D.C., Bunney, W.E. Jr. & Goodwin, F.K. Dopamine and mania: behavioral and biochemical effects of the dopamine receptor blocker pimozide. Psychopharmacology (Berl.) 67, 297–305 (1980).

    CAS  Google Scholar 

  23. Brown, P.J. et al. Identification of a subtype selective human PPARα agonist through parallel-array synthesis. Bioorg. Med. Chem. Lett. 11, 1225–1227 (2001).

    CAS  PubMed  Google Scholar 

  24. Prage, E.B. et al. Location of inhibitor binding sites in the human inducible prostaglandin E synthase, MPGES1. Biochemistry 50, 7684–7693 (2011).

    CAS  PubMed  Google Scholar 

  25. Xiao, H. et al. Insights into the mechanism of microtubule stabilization by Taxol. Proc. Natl. Acad. Sci. USA 103, 10166–10173 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Khrapunovich-Baine, M. et al. Distinct pose of discodermolide in taxol binding pocket drives a complementary mode of microtubule stabilization. Biochemistry 48, 11664–11677 (2009).

    CAS  PubMed  Google Scholar 

  27. Villamil, M.A. et al. Serine phosphorylation is critical for the activation of ubiquitin-specific protease 1 and its interaction with WD40-repeat protein UAF1. Biochemistry 51, 9112–9123 (2012).

    CAS  PubMed  Google Scholar 

  28. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    CAS  PubMed  Google Scholar 

  29. Altun, M. et al. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol. 18, 1401–1412 (2011).

    CAS  PubMed  Google Scholar 

  30. Köberle, B., Tomicic, M.T., Usanova, S. & Kaina, B. Cisplatin resistance: preclinical findings and clinical implications. Biochim. Biophys. Acta 1806, 172–182 (2010).

    PubMed  Google Scholar 

  31. Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010).

    CAS  PubMed  Google Scholar 

  32. Albertella, M.R., Green, C.M., Lehmann, A.R. & O'Connor, M.J. A role for polymerase η in the cellular tolerance to cisplatin-induced damage. Cancer Res. 65, 9799–9806 (2005).

    CAS  PubMed  Google Scholar 

  33. Johnson, R.E., Prakash, S. & Prakash, L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Polη. Science 283, 1001–1004 (1999).

    CAS  PubMed  Google Scholar 

  34. You, C. et al. A quantitative assay for assessing the effects of DNA lesions on transcription. Nat. Chem. Biol. 8, 817–822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, H., Yang, K., Dejsuphong, D. & D'Andrea, A.D. Regulation of Rev1 by the Fanconi anemia core complex. Nat. Struct. Mol. Biol. 19, 164–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Renaud, E. & Rosselli, F. FANC pathway promotes UV-induced stalled replication forks recovery by acting both upstream and downstream Polη and Rev1. PLoS ONE 8, e53693 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, X. & Heyer, W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18, 99–113 (2008).

    CAS  PubMed  Google Scholar 

  38. Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15, 607–620 (2004).

    CAS  PubMed  Google Scholar 

  39. Xia, B. et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell 22, 719–729 (2006).

    CAS  PubMed  Google Scholar 

  40. Sonoda, E. et al. Multiple roles of Rev3, the catalytic subunit of polζ in maintaining genome stability in vertebrates. EMBO J. 22, 3188–3197 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Takata, M., Ishiai, M. & Kitao, H. The Fanconi anemia pathway: Insights from somatic cell genetics using DT40 cell line. Mutat. Res. 668, 92–102 (2009).

    CAS  PubMed  Google Scholar 

  42. Lebwohl, D. & Canetta, R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur. J. Cancer 34, 1522–1534 (1998).

    CAS  PubMed  Google Scholar 

  43. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007).

    CAS  PubMed  Google Scholar 

  44. Brabec, V. & Kasparkova, J. Molecular aspects of resistance to antitumor platinum drugs. Drug Resist. Updat. 5, 147–161 (2002).

    CAS  PubMed  Google Scholar 

  45. Park, E. et al. FANCD2 activates transcription of TAp63 and suppresses tumorigenesis. Mol. Cell 50, 908–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Williams, S.A. et al. USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell 146, 918–930 (2011).

    CAS  PubMed  Google Scholar 

  47. Xu, G., Paige, J.S. & Jaffrey, S.R. Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat. Biotechnol. 28, 868–873 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Burkhart, R.A. et al. Mitoxantrone targets human ubiquitin-specific peptidase 11 (USP11) and is a potent inhibitor of pancreatic cancer cell survival. Mol. Cancer Res. 11, 901–911 (2013).

    CAS  PubMed  Google Scholar 

  49. Hibbert, R.G. & Sixma, T.K. Intrinsic flexibility of ubiquitin on proliferating cell nuclear antigen (PCNA) in translesion synthesis. J. Biol. Chem. 287, 39216–39223 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Inglese, J. et al. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad. Sci. USA 103, 11473–11478 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. You, C. et al. Translesion synthesis of 8,5′-cyclopurine-2′-deoxynucleosides by DNA polymerases η, ι, and ζ. J. Biol. Chem. 288, 28548–28556 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Baker, D.J. et al. Nucleotide excision repair eliminates unique DNA-protein cross-links from mammalian cells. J. Biol. Chem. 282, 22592–22604 (2007).

    CAS  PubMed  Google Scholar 

  53. Yuan, B. et al. The roles of DNA polymerases κ and ι in the error-free bypass of N2-carboxyalkyl-2′-deoxyguanosine lesions in mammalian cells. J. Biol. Chem. 286, 17503–17511 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mitra, D. et al. An ultraviolet-radiation–independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491, 449–453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Burns, J.A., Dreij, K., Cartularo, L. & Scicchitano, D.A. O6-methylguanine induces altered proteins at the level of transcription in human cells. Nucleic Acids Res. 38, 8178–8187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sanchez, J.A., Marek, D. & Wangh, L.J. The efficiency and timing of plasmid DNA replication in Xenopus eggs: correlations to the extent of prior chromatin assembly. J. Cell Sci. 103, 907–918 (1992).

    CAS  PubMed  Google Scholar 

  57. Taylor, E.R. & Morgan, I.M. A novel technique with enhanced detection and quantitation of HPV-16 E1- and E2-mediated DNA replication. Virology 315, 103–109 (2003).

    CAS  PubMed  Google Scholar 

  58. Delaney, J.C. & Essigmann, J.M. Mutagenesis, genotoxicity, and repair of 1-methyladenine, 3-alkylcytosines, 1-methylguanine, and 3-methylthymine in alkB Escherichia coli. Proc. Natl. Acad. Sci. USA 101, 14051–14056 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Delaney, J.C. & Essigmann, J.M. Assays for determining lesion bypass efficiency and mutagenicity of site-specific DNA lesions in vivo. Methods Enzymol. 408, 1–15 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Cordeiro-Stone (University of North Carolina at Chapel Hill) for xeroderma pigmentosum variant (XPV) human fibroblasts GM02359-hTERT (XP115LO) and Polη-complemented GM02359-hTERT (XPV + Polη) and M. Jasin (Memorial Sloan-Kettering Cancer Center) for DR-GFP U2OS cells. We also thank C. Arrowsmith (University of Toronto and Ontario Cancer Institute) for the USP21 plasmid; A. Tencer for assistance with protein purification; S. Michael and R. Jones for automation support; P. Shinn and D. van Leer for assistance with compound management; and W. Leister, H. Baker, C. Leclair and E. Fernandez for analytical chemistry and compound purification support. This work was supported by US National Institutes of Health (NIH) grant R03DA030552 and in part by NIH grant R01GM097468 to Z.Z. C.A.O. was supported by NIH training grant T32GM008550. Work in the laboratory of Y.W. was supported by NIH grant R01DK082779. T.S.D., A.S.R., D.K.L., A.S., A.J. and D.J.M. were supported by the intramural research program of the National Center for Advancing Translational Sciences and the Molecular Libraries Initiative of the National Institutes of Health Roadmap for Medical Research (U54MH084681).

Author information

Authors and Affiliations

Authors

Contributions

Q.L., T.S.D. and J.C. designed, performed and analyzed in vitro biochemical assays for DUBs and other proteases. T.S.D. and A.S. designed and performed the HTS assay. Q.L. and P.Z. designed, performed and analyzed cell culture experiments. A.S.R., D.K.L. and D.J.M. performed chemical synthesis and oversaw the chemistry efforts. M.A.V. performed protein purification and native gel analysis. C.Y. and B.Y. performed the cellular DNA replication assay under the guidance of Y.W. Q.Z. and H.X. performed and analyzed HDX experiments. C.A.O. generated substrates for the DUB assay. H.S. and A.J. analyzed HTS data and structure-activity relationship results. Z.Z. and D.J.M. designed the research plan and wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to David J Maloney or Zhihao Zhuang.

Ethics declarations

Competing interests

A patent application on the compounds described in the paper as DUB inhibitors has been filed.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–20, Supplementary Tables 1–3 and Supplementary Note. (PDF 23259 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Q., Dexheimer, T., Zhang, P. et al. A selective USP1–UAF1 inhibitor links deubiquitination to DNA damage responses. Nat Chem Biol 10, 298–304 (2014). https://doi.org/10.1038/nchembio.1455

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1455

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer