Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated RAS signaling defined by parallel NMR detection of effectors and regulators

Abstract

The RAS GTPase directs cell proliferation and survival by selectively relaying signals amid a dynamic network of regulatory enzymes and protein interactions. Oncogenic mutation of RAS alters cell growth by deleteriously controlling output to RAS-binding effectors. Mechanisms underlying multieffector interactions for both wild-type and oncogenic RAS are poorly understood owing to challenges in quantifying outputs to multiple pathways in parallel. Using highly selective NMR probes for wild-type and oncogenic (G12V) RAS, we develop a systematic approach that quantitatively measures RAS output in composite mixtures of GEF, GAP and effector RAS-binding domains (RBDs). We derive effector signaling hierarchies and establish how oscillating concentrations generate effector 'switching'. The G12V mutation highly perturbs this system, specifically altering interactions with RAL GTPase-specific GEFs and RAF kinases. We further reveal that RAS–RBD complexes show extensive feedback to full-length regulatory proteins. Our approach quantifies output from signaling hubs, here providing an integrated view of the RAS network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantification of effector signaling by parallel detection of multiple RBD domains binding to [15N]RAS-GTP.
Figure 2: Establishing an RBD binding hierarchy.
Figure 3: RASG12V demonstrates distinct effector usage.
Figure 4: Wild-type RAS and RASG12V show opposing activation of RALA and ERK.
Figure 5: RBD–RAS complexes inhibit GAP activity.
Figure 6: RBDs inhibit full-length SOS1 by preventing its allosteric activation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Vetter, I.R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez-Viciana, P., Sabatier, C. & McCormick, F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol. Cell. Biol. 24, 4943–4954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rudolph, M.G. et al. Thermodynamics of Ras/effector and Cdc42/effector interactions probed by isothermal titration calorimetry. J. Biol. Chem. 276, 23914–23921 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Wohlgemuth, S. et al. Recognizing and defining true Ras binding domains I: biochemical analysis. J. Mol. Biol. 348, 741–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kiel, C., Foglierini, M., Kuemmerer, N., Beltrao, P. & Serrano, L. A genome-wide Ras-effector interaction network. J. Mol. Biol. 370, 1020–1032 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Scheffzek, K. et al. The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Margarit, S.M. et al. Structural evidence for feedback activation by Ras. GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Gureasko, J. et al. Role of the histone domain in the autoinhibition and activation of the Ras activator Son of Sevenless. Proc. Natl. Acad. Sci. USA 107, 3430–3435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nassar, N. et al. The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Huang, L., Hofer, F., Martin, G.S. & Kim, S.H. Structural basis for the interaction of Ras with RalGDS. Nat. Struct. Biol. 5, 422–426 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Pacold, M.E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase γ. Cell 103, 931–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Kiel, C., Serrano, L. & Herrmann, C. A detailed thermodynamic analysis of ras/effector complex interfaces. J. Mol. Biol. 340, 1039–1058 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Hamad, N.M. et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16, 2045–2057 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karnoub, A.E. & Weinberg, R.A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9, 517–531 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zand, T.P., Reiner, D.J. & Der, C.J. Ras effector switching promotes divergent cell fates in C. elegans vulval patterning. Dev. Cell 20, 84–96 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yeh, J.J. & Der, C.J. Targeting signal transduction in pancreatic cancer treatment. Expert Opin. Ther. Targets 11, 673–694 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Scheffler, J.E. et al. Characterization of a 78-residue fragment of c-Raf-1 that comprises a minimal binding domain for the interaction with Ras-GTP. J. Biol. Chem. 269, 22340–22346 (1994).

    CAS  PubMed  Google Scholar 

  18. Warne, P.H., Viciana, P.R. & Downward, J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352–355 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X.F. et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308–313 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Smith, M.J., Neel, B.G. & Ikura, M. NMR-based functional profiling of RASopathies and oncogenic RAS mutations. Proc. Natl. Acad. Sci. USA 110, 4574–4579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Geyer, M. et al. Conformational transitions in p21ras and in its complexes with the effector protein Raf-RBD and the GTPase activating protein GAP. Biochemistry 35, 10308–10320 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Spoerner, M., Herrmann, C., Vetter, I.R., Kalbitzer, H.R. & Wittinghofer, A. Dynamic properties of the Ras switch I region and its importance for binding to effectors. Proc. Natl. Acad. Sci. USA 98, 4944–4949 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spoerner, M., Wittinghofer, A. & Kalbitzer, H.R. Perturbation of the conformational equilibria in Ras by selective mutations as studied by 31P NMR spectroscopy. FEBS Lett. 578, 305–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. González-García, A. et al. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7, 219–226 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. Mishra, P.J. et al. Dissection of RAS downstream pathways in melanomagenesis: a role for Ral in transformation. Oncogene 29, 2449–2456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vigil, D. et al. Aberrant overexpression of the Rgl2 Ral small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through Ral-dependent and Ral-independent mechanisms. J. Biol. Chem. 285, 34729–34740 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bauer, B. et al. Effector recognition by the small GTP-binding proteins Ras and Ral. J. Biol. Chem. 274, 17763–17770 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Sydor, J.R., Engelhard, M., Wittinghofer, A., Goody, R.S. & Herrmann, C. Transient kinetic studies on the interaction of Ras and the Ras-binding domain of c-Raf-1 reveal rapid equilibration of the complex. Biochemistry 37, 14292–14299 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Linnemann, T., Kiel, C., Herter, P. & Herrmann, C. The activation of RalGDS can be achieved independently of its Ras binding domain. Implications of an activation mechanism in Ras effector specificity and signal distribution. J. Biol. Chem. 277, 7831–7837 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Herrmann, C. Ras-effector interactions: after one decade. Curr. Opin. Struct. Biol. 13, 122–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Gideon, P. et al. Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol. Cell. Biol. 12, 2050–2056 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eccleston, J.F., Moore, K.J., Morgan, L., Skinner, R.H. & Lowe, P.N. Kinetics of interaction between normal and proline 12 Ras and the GTPase-activating proteins, p120-GAP and neurofibromin. The significance of the intrinsic GTPase rate in determining the transforming ability of ras. J. Biol. Chem. 268, 27012–27019 (1993).

    CAS  PubMed  Google Scholar 

  33. Weber, C.K. et al. Mitogenic signaling of Ras is regulated by differential interaction with Raf isozymes. Oncogene 19, 169–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Gureasko, J. et al. Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat. Struct. Mol. Biol. 15, 452–461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sondermann, H. et al. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119, 393–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Takashima, A. & Faller, D.V. Targeting the RAS oncogene. Expert Opin. Ther. Targets 17, 507–531 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hofmann, I. et al. K-RAS mutant pancreatic tumors show higher sensitivity to MEK than to PI3K inhibition in vivo. PLoS ONE 7, e44146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roberts, P.J. et al. Combined PI3K/mTOR and MEK inhibition provides broad antitumor activity in faithful murine cancer models. Clin. Cancer Res. 18, 5290–5303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kiel, C., Selzer, T., Shaul, Y., Schreiber, G. & Herrmann, C. Electrostatically optimized Ras-binding Ral guanine dissociation stimulator mutants increase the rate of association by stabilizing the encounter complex. Proc. Natl. Acad. Sci. USA 101, 9223–9228 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ader, C., Spoerner, M., Kalbitzer, H.R. & Brunner, E. Solid-state 31P NMR spectroscopy of precipitated guanine nucleotide-binding protein Ras in complexes with its effector molecules Raf kinase and RalGDS. J. Phys. Chem. B 111, 2752–2757 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Spoerner, M. et al. Conformational states of human rat sarcoma (Ras) protein complexed with its natural ligand GTP and their role for effector interaction and GTP hydrolysis. J. Biol. Chem. 285, 39768–39778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jura, N., Scotto-Lavino, E., Sobczyk, A. & Bar-Sagi, D. Differential modification of Ras proteins by ubiquitination. Mol. Cell 21, 679–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Harding, A., Tian, T., Westbury, E., Frische, E. & Hancock, J.F. Subcellular localization determines MAP kinase signal output. Curr. Biol. 15, 869–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Tian, T. et al. Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. Nat. Cell Biol. 9, 905–914 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Bivona, T.G. et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Dougherty, M.K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Douville, E. & Downward, J. EGF induced SOS phosphorylation in PC12 cells involves P90 RSK-2. Oncogene 15, 373–383 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Boykevisch, S. et al. Regulation of ras signaling dynamics by Sos-mediated positive feedback. Curr. Biol. 16, 2173–2179 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Freedman, T.S. et al. A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc. Natl. Acad. Sci. USA 103, 16692–16697 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, H. et al. Oncogenic K-Ras requires activation for enhanced activity. Oncogene 10.1038/onc.2012.619 (2013).

  51. Depetris, R.S., Wu, J. & Hubbard, S.R. Structural and functional studies of the Ras-associating and pleckstrin-homology domains of Grb10 and Grb14. Nat. Struct. Mol. Biol. 16, 833–839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92, 7297–7301 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Johnson, B.A. Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol. Biol. 278, 313–352 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Neel, G. Findlay, C. Marshall and M. Mazhab-Jafari for valuable discussion and thoughts on the manuscript. This work was supported by a grant from the Cancer Research Society (to M.I.) and in part by the Canadian Cancer Society (to M.I.) and by the Princess Margaret Hospital Foundation. M.J.S. is the recipient of a Canadian Breast Cancer Foundation Fellowship and an Ontario Cancer Institute Knudson Postdoctoral Fellowship. M.I. holds a Canada Research Chair. The Canada Foundation for Innovation funded the 800- and 600-MHz NMR spectrometers.

Author information

Authors and Affiliations

Authors

Contributions

This project was conceived and designed by M.J.S. and M.I. All of the experimental work was performed by M.J.S. The manuscript was prepared by M.J.S. and M.I.

Corresponding author

Correspondence to Mitsuhiko Ikura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–9 and Supplementary Tables 1–5. (PDF 4381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M., Ikura, M. Integrated RAS signaling defined by parallel NMR detection of effectors and regulators. Nat Chem Biol 10, 223–230 (2014). https://doi.org/10.1038/nchembio.1435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing