Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer

Abstract

The pervasive influence of secreted Wnt signaling proteins in tissue homeostasis and tumorigenesis has galvanized efforts to identify small molecules that target Wnt-mediated cellular responses. By screening a diverse synthetic chemical library, we have discovered two new classes of small molecules that disrupt Wnt pathway responses; whereas one class inhibits the activity of Porcupine, a membrane-bound acyltransferase that is essential to the production of Wnt proteins, the other abrogates destruction of Axin proteins, which are suppressors of Wnt/β-catenin pathway activity. With these small molecules, we establish a chemical genetic approach for studying Wnt pathway responses and stem cell function in adult tissue. We achieve transient, reversible suppression of Wnt/β-catenin pathway response in vivo, and we establish a mechanism-based approach to target cancerous cell growth. The signal transduction mechanisms shown here to be chemically tractable additionally contribute to Wnt-independent signal transduction pathways and thus could be broadly exploited for chemical genetics and therapeutic goals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure and potency of IWR and IWP compounds.
Figure 2: Biochemical evidence for Wnt/β-catenin pathway inhibition by IWR and IWP compounds.
Figure 3: IWP compounds target the O-acyltransferase Porcn.
Figure 4: Stabilization of the Axin2 destruction complex by IWR compounds.
Figure 5: Chemical inhibition of the Wnt/β-catenin pathway in regeneration of zebrafish tissue.
Figure 6: The effects of IWR-1 on caudal fin regeneration are reversible.
Figure 7: Chemical inhibition of cancerous Wnt/β-catenin pathway activity.

Similar content being viewed by others

References

  1. Clevers, H. Wnt/beta-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Cole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H. & Young, R.A. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev. 22, 746–755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van der Flier, L.G. et al. The intestinal Wnt/TCF signature. Gastroenterology 132, 628–632 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Fevr, T., Robine, S., Louvard, D. & Huelsken, J. Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol. Cell. Biol. 27, 7551–7559 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19, 379–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Muncan, V. et al. T-cell factor 4 (Tcf7l2) maintains proliferative compartments in zebrafish intestine. EMBO Rep. 8, 966–973 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brack, A.S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, H. et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317, 803–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Kinzler, K.W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  PubMed  Google Scholar 

  12. Polakis, P. The many ways of Wnt in cancer. Curr. Opin. Genet. Dev. 17, 45–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kurayoshi, M., Yamamoto, H., Izumi, S. & Kikuchi, A. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem. J. 402, 515–523 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chamoun, Z. et al. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293, 2080–2084 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Abrami, L., Kunz, B., Iacovache, I. & van der Goot, F.G. Palmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 105, 5384–5389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tanaka, K., Okabayashi, K., Asashima, M., Perrimon, N. & Kadowaki, T. The evolutionarily conserved porcupine gene family is involved in the processing of the Wnt family. Eur. J. Biochem. 267, 4300–4311 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, H. & He, X. Wnt/beta-catenin signaling: new (and old) players and new insights. Curr. Opin. Cell Biol. 20, 119–125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Orsulic, S., Huber, O., Aberle, H., Arnold, S. & Kemler, R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J. Cell Sci. 112, 1237–1245 (1999).

    CAS  PubMed  Google Scholar 

  20. Jho, E.H. et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell. Biol. 22, 1184–1193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cselenyi, C.S. et al. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin. Proc. Natl. Acad. Sci. USA 105, 8032–8037 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stoick-Cooper, C.L. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134, 479–489 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Whitehead, G.G., Makino, S., Lien, C.L. & Keating, M.T. fgf20 is essential for initiating zebrafish fin regeneration. Science 310, 1957–1960 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Sabates-Bellver, J. et al. Transcriptome profile of human colorectal adenomas. Mol. Cancer Res. 5, 1263–1275 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Barker, N. & Clevers, H. Mining the Wnt pathway for cancer therapeutics. Nat. Rev. Drug Discov. 5, 997–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, J., Brown, M.S., Liang, G., Grishin, N.V. & Goldstein, J.L. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132, 387–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, E., Salic, A., Kruger, R., Heinrich, R. & Kirschner, M.W. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 1, E10 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shepard, J.L. et al. A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc. Natl. Acad. Sci. USA 102, 13194–13199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poss, K.D. et al. Roles for Fgf signaling during zebrafish fin regeneration. Dev. Biol. 222, 347–358 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Bienz (Medical Research Council Laboratory of Molecular Biology), R.T. Moon (University of Washington), P.T. Chuang (University of California, San Francisco), J. Laborda (University of Castilla-La Mancha), G. Johnson (University of Alabama at Birmingham), P. Beachy (Stanford University), J. Minna, M. Brown and J. Goldstein (University of Texas Southwestern Medical Center) for reagents, and D. Frantz, K. Lillard, the University of Texas Southwestern Pathology Core, S. McKnight and the High-Throughput Screening Core for support with the chemical screen. This work was supported by the US National Cancer Institute (PO1 CA095471; Z.M., J.K. and N.S.W.), the US National Institute of General Medical Sciences (1R01GM076398-01), the American Cancer Society (RSG GMC-112251), the Welch Foundation (I-1665), a High Risk/High Impact award from the University of Texas Southwestern and an endowment from Virginia Murchison Linthicum.

Author information

Authors and Affiliations

Authors

Contributions

B.C., M.E.D., W.T., C.-W.F., S.W., W.H., J.K., N.S.W., M.G.R., J.F.A., C.C. and L.L. designed the experiments and analyzed the results. B.C., M.E.D., C.C. and L.L. wrote the manuscript. J.F.A. and B.C. performed zebrafish experiments. J.L., Z.M. and C.C. synthesized compounds.

Corresponding author

Correspondence to Lawrence Lum.

Ethics declarations

Competing interests

The authors declare competing financial interests in the form of a pending patent application.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 2574 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Dodge, M., Tang, W. et al. Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5, 100–107 (2009). https://doi.org/10.1038/nchembio.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing