Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-molecule antagonists of melanopsin-mediated phototransduction

Abstract

Melanopsin, expressed in a subset of retinal ganglion cells, mediates behavioral adaptation to ambient light and other non-image-forming photic responses. This has raised the possibility that pharmacological manipulation of melanopsin can modulate several central nervous system responses, including photophobia, sleep, circadian rhythms and neuroendocrine function. Here we describe the identification of a potent synthetic melanopsin antagonist with in vivo activity. New sulfonamide compounds inhibiting melanopsin (opsinamides) compete with retinal binding to melanopsin and inhibit its function without affecting rod- and cone-mediated responses. In vivo administration of opsinamides to mice specifically and reversibly modified melanopsin-dependent light responses, including the pupillary light reflex and light aversion. The discovery of opsinamides raises the prospect of therapeutic control of the melanopsin phototransduction system to regulate light-dependent behavior and remediate pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Opsinamides inhibit melanopsin photoresponse.
Figure 2: Specific and competitive binding of opsinamide to melanopsin.
Figure 3: Opsinamide inhibits melanopsin photoresponses without inhibiting rod and cone function.
Figure 4: Opsinamides reversibly attenuate melanopsin-mediated photoresponses.

Similar content being viewed by others

References

  1. Hatori, M. & Panda, S. The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol. Med. 16, 435–436 (2010).

    Article  CAS  Google Scholar 

  2. Pryse-Phillips, W.E. et al. Guidelines for the diagnosis and management of migraine in clinical practice. Canadian Headache Society. CMAJ 156, 1273–1287 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Good, P.A., Taylor, R.H. & Mortimer, M.J. The use of tinted glasses in childhood migraine. Headache 31, 533–536 (1991).

    Article  CAS  Google Scholar 

  4. Do, M.T. & Yau, K.W. Intrinsically photosensitive retinal ganglion cells. Physiol. Rev. 90, 1547–1581 (2010).

    Article  CAS  Google Scholar 

  5. Panda, S. et al. Illumination of the melanopsin signaling pathway. Science 307, 600–604 (2005).

    Article  CAS  Google Scholar 

  6. Walker, M.T., Brown, R.L., Cronin, T.W. & Robinson, P.R. Photochemistry of retinal chromophore in mouse melanopsin. Proc. Natl. Acad. Sci. USA 105, 8861–8865 (2008).

    Article  CAS  Google Scholar 

  7. Choe, H.W. et al. Crystal structure of metarhodopsin II. Nature 471, 651–655 (2011).

    Article  CAS  Google Scholar 

  8. Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004).

    Article  CAS  Google Scholar 

  9. Pulivarthy, S.R. et al. Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock. Proc. Natl. Acad. Sci. USA 104, 20356–20361 (2007).

    Article  CAS  Google Scholar 

  10. Kefalov, V.J., Crouch, R.K. & Cornwall, M.C. Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron 29, 749–755 (2001).

    Article  CAS  Google Scholar 

  11. Melyan, Z., Tarttelin, E.E., Bellingham, J., Lucas, R.J. & Hankins, M.W. Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745 (2005).

    Article  CAS  Google Scholar 

  12. Qiu, X. et al. Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745–749 (2005).

    Article  CAS  Google Scholar 

  13. Wong, K.Y., Dunn, F.A. & Berson, D.M. Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48, 1001–1010 (2005).

    Article  CAS  Google Scholar 

  14. Hartwick, A.T. et al. Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J. Neurosci. 27, 13468–13480 (2007).

    Article  CAS  Google Scholar 

  15. Fu, Y. et al. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A–based photopigment, melanopsin. Proc. Natl. Acad. Sci. USA 102, 10339–10344 (2005).

    Article  CAS  Google Scholar 

  16. Do, M.T. et al. Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457, 281–287 (2009).

    Article  CAS  Google Scholar 

  17. Panda, S. et al. Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525–527 (2003).

    Article  CAS  Google Scholar 

  18. Berson, D.M. Phototransduction in ganglion-cell photoreceptors. Pflugers Arch. 454, 849–855 (2007).

    Article  CAS  Google Scholar 

  19. Lucas, R.J., Douglas, R.H. & Foster, R.G. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat. Neurosci. 4, 621–626 (2001).

    Article  CAS  Google Scholar 

  20. Lucas, R.J. et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245–247 (2003).

    Article  CAS  Google Scholar 

  21. Lall, G.S. et al. Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66, 417–428 (2010).

    Article  CAS  Google Scholar 

  22. Noseda, R. et al. A neural mechanism for exacerbation of headache by light. Nat. Neurosci. 13, 239–245 (2010).

    Article  CAS  Google Scholar 

  23. Johnson, J. et al. Melanopsin-dependent light avoidance in neonatal mice. Proc. Natl. Acad. Sci. USA 107, 17374–17378 (2010).

    Article  CAS  Google Scholar 

  24. Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P. & Rollag, M.D. Melanopsin: An opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. USA 95, 340–345 (1998).

    Article  CAS  Google Scholar 

  25. Nayak, S.K., Jegla, T. & Panda, S. Role of a novel photopigment, melanopsin, in behavioral adaptation to light. Cell. Mol. Life Sci. 64, 144–154 (2007).

    Article  CAS  Google Scholar 

  26. Isoldi, M.C., Rollag, M.D., Castrucci, A.M. & Provencio, I. Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc. Natl. Acad. Sci. USA 102, 1217–1221 (2005).

    Article  CAS  Google Scholar 

  27. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein–coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  Google Scholar 

  28. Standfuss, J. et al. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471, 656–660 (2011).

    Article  CAS  Google Scholar 

  29. Jastrzebska, B., Orban, T., Golczak, M., Engel, A. & Palczewski, K. Asymmetry of the rhodopsin dimer in complex with transducin. FASEB J. 27, 1572–1584 (2013).

    Article  CAS  Google Scholar 

  30. Craig, D.A. The Cheng-Prusoff relationship: something lost in the translation. Trends Pharmacol. Sci. 14, 89–91 (1993).

    Article  CAS  Google Scholar 

  31. Kenakin, T.P. A Pharmacology Primer: Theory, Application and Methods (Elsevier Academic Press, London, 2006).

  32. Hatori, M. et al. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3, e2451 (2008); erratum http://dx.doi.org/10.1371/annotation/c02106ba-b00b-4416-9834-cf0f3ba49a37 (2008).

    Article  Google Scholar 

  33. Brown, T.M. et al. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biol. 8, e1000558 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Boyle, B. Li, A. Pieris, R. Li, P. Rao, M. Cajina, H. Zhang (Lundbeck), H. Le, S. Keding (Salk Institute) for expert technical help. This work was supported by grants from the Hearst Foundation; US National Institutes of Health (NIH) grants NIH EY 016807, S10 RR027450 and NS066457 to S.P.; a Japan Society for the Promotion of Science fellowship to M.H.; Fyssen and Catharina foundation fellowships to L.S.M.; and NIH grant NIH EY017809 to P.J.S. and G.E.P.

Author information

Authors and Affiliations

Authors

Contributions

K.A.J., M.H., L.S.M., J.R.B., R.A., S.-P.H., M.M., H.Z., Q.Z. and A.T.E.H. did the experiments. K.A.J., M.H., L.S.M., J.R.B., A.T.E.H., P.J.S., G.E.P., S.P. and J.S. analyzed the results and prepared figures. K.A.J., J.S., A.T.E.H., P.J.S., G.E.P. and S.P. designed experiments and prepared the manuscript.

Corresponding authors

Correspondence to Kenneth A Jones or Satchidananda Panda.

Ethics declarations

Competing interests

K.J., R.A., S.-P.H., M.M., H.Z. and J.S. performed experimental work while they were employees of Lundbeck Research USA.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1–4 (PDF 1588 kb)

Supplementary Movie 1

Negative phototaxis of wild-type neonatal (P8) mouse treated with vehicle. The first 2 min of the movie shows the pup's activity inside a plexiglass tube under complete darkness. The next 2 min shows the response to bright blue light illuminated from the left (shown as an arrow) of the plexiglass tube. The movie is sped up 4×. (MOV 19088 kb)

Supplementary Movie 2

Evaluation of negative phototaxis in a wild-type neonatal (P8) mouse treated with AA92593.The first 2 min of the movie shows the pup's activity inside a plexiglass tube under complete darkness. The next 2 min shows the response to bright blue light illuminated from the left (shown as an arrow) end of the plexiglass tube. The movie is sped up 4X. (MOV 20445 kb)

Supplementary Movie 3

Evaluation of negative phototaxis in neonatal (P8) Opn4–/– mouse. The first 2 min of the movie shows the pup's activity inside a plexiglass tube under complete darkness. The next 2 min shows the response to bright blue light illuminated from the left (shown as an arrow) end of the plexiglass tube. The movie is sped up 4×. (MOV 27461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, K., Hatori, M., Mure, L. et al. Small-molecule antagonists of melanopsin-mediated phototransduction. Nat Chem Biol 9, 630–635 (2013). https://doi.org/10.1038/nchembio.1333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1333

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research