Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases

Abstract

How living organisms create carbon-sulfur bonds during the biosynthesis of critical sulfur-containing compounds is still poorly understood. The methylthiotransferases MiaB and RimO catalyze sulfur insertion into tRNAs and ribosomal protein S12, respectively. Both belong to a subgroup of radical–S-adenosylmethionine (radical-SAM) enzymes that bear two [4Fe-4S] clusters. One cluster binds S-adenosylmethionine and generates an Ado radical via a well-established mechanism. However, the precise role of the second cluster is unclear. For some sulfur-inserting radical-SAM enzymes, this cluster has been proposed to act as a sacrificial source of sulfur for the reaction. In this paper, we report parallel enzymological, spectroscopic and crystallographic investigations of RimO and MiaB, which provide what is to our knowledge the first evidence that these enzymes are true catalysts and support a new sulfation mechanism involving activation of an exogenous sulfur cosubstrate at an exchangeable coordination site on the second cluster, which remains intact during the reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The methylthiolation reactions catalyzed by MiaB and RimO.
Figure 2: Enzymological characterization of MiaB.
Figure 3: HYSCORE spectra of variant MiaB3C.
Figure 4: Crystal structure of holo-TmRimO.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Fontecave, M., Ollagnier-de-Choudens, S. & Mulliez, E. Biological radical sulfur insertion reactions. Chem. Rev. 103, 2149–2166 (2003).

    Article  CAS  Google Scholar 

  2. Jenner, L., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural rearrangements of the ribosome at the tRNA proofreading step. Nat. Struct. Mol. Biol. 17, 1072–1078 (2010).

    Article  CAS  Google Scholar 

  3. Wei, F.Y. et al. Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J. Clin. Invest. 121, 3598–3608 (2011).

    Article  CAS  Google Scholar 

  4. Atta, M. et al. S-Adenosylmethionine–dependent radical-based modification of biological macromolecules. Curr. Opin. Struct. Biol. 20, 684–692 (2010).

    Article  CAS  Google Scholar 

  5. Kowalak, J.A. & Walsh, K.A. β-methylthio-aspartic acid: identification of a novel posttranslational modification in ribosomal protein S12 from Escherichia coli. Protein Sci. 5, 1625–1632 (1996).

    Article  CAS  Google Scholar 

  6. Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F. & Miller, N.E. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097–1106 (2001).

    Article  CAS  Google Scholar 

  7. Lee, K.H. et al. Characterization of RimO, a new member of the methylthiotransferase subclass of the radical SAM superfamily. Biochemistry 48, 10162–10174 (2009).

    Article  CAS  Google Scholar 

  8. Hernández, H.L. et al. MiaB, a bifunctional radical-S-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry 46, 5140–5147 (2007).

    Article  Google Scholar 

  9. Arragain, S. et al. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N-6-threonylcarbamoyladenosine in tRNA. J. Biol. Chem. 285, 28425–28433 (2010).

    Article  CAS  Google Scholar 

  10. Arragain, S. et al. Post-translational modification of ribosomal proteins. structural and functional characterization of RimO from Thermotoga maritima, a radical S-adenosylmethionine methylthiotransferase. J. Biol. Chem. 285, 5792–5801 (2010).

    Article  CAS  Google Scholar 

  11. Anantharaman, V., Koonin, E.V. & Aravind, L. TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. FEMS Microbiol. Lett. 197, 215–221 (2001).

    Article  CAS  Google Scholar 

  12. Booker, S.J., Cicchillo, R.M. & Grove, T.L. Self-sacrifice in radical S-adenosylmethionine proteins. Curr. Opin. Chem. Biol. 11, 543–552 (2007).

    Article  CAS  Google Scholar 

  13. Ugulava, N.B., Sacanell, C.J. & Jarrett, J.T. Spectroscopic changes during a single turnover of biotin synthase: destruction of a [2Fe-2S] cluster accompanies sulfur insertion. Biochemistry 40, 8352–8358 (2001).

    Article  CAS  Google Scholar 

  14. Frey, P.A., Hegeman, A.D. & Ruzicka, F.J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008).

    Article  CAS  Google Scholar 

  15. Pierrel, F., Douki, T., Fontecave, M. & Atta, M. MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J. Biol. Chem. 279, 47555–47563 (2004).

    Article  CAS  Google Scholar 

  16. Vey, J.L. & Drennan, C.L. Structural insights into radical generation by the radical SAM superfamily. Chem. Rev. 111, 2487–2506 (2011).

    Article  CAS  Google Scholar 

  17. Duschene, K.S., Veneziano, S.E., Silver, S.C. & Broderick, J.B. Control of radical chemistry in the AdoMet radical enzymes. Curr. Opin. Chem. Biol. 13, 74–83 (2009).

    Article  CAS  Google Scholar 

  18. Zhang, Q. & Liu, W. Complex biotransformations catalyzed by radical S-adenosylmethionine enzymes. J. Biol. Chem. 286, 30245–30252 (2011).

    Article  CAS  Google Scholar 

  19. Branden, C. & Tooze, J. Introduction to Protein Structure Vol. 2, 59–60 (Garland Publishing, New York, 1999).

  20. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  21. Andreeva, A. et al. Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 36, D419–D425 (2008).

    Article  CAS  Google Scholar 

  22. Baikalov, I. et al. Structure of the Escherichia coli response regulator NarL. Biochemistry 35, 11053–11061 (1996).

    Article  CAS  Google Scholar 

  23. Schnell, R., Agren, D. & Schneider, G. 1.9-Å structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 1096–1100 (2008).

    Article  CAS  Google Scholar 

  24. Maris, A.E. et al. Dimerization allows DNA target site recognition by the NarL response regulator. Nat. Struct. Biol. 9, 771–778 (2002).

    Article  CAS  Google Scholar 

  25. Porter, S.L., Wadhams, G.H. & Armitage, J.P. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9, 153–165 (2011).

    Article  CAS  Google Scholar 

  26. Berkovitch, F., Nicolet, Y., Wan, J.T., Jarrett, J.T. & Drennan, C.L. Crystal structure of biotin synthase, an S-adenosylmethionine–dependent radical enzyme. Science 303, 76–79 (2004).

    Article  CAS  Google Scholar 

  27. Hänzelmann, P. & Schindelin, H. Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. Proc. Natl. Acad. Sci. USA 101, 12870–12875 (2004).

    Article  Google Scholar 

  28. Lees, N.S. et al. ENDOR spectroscopy shows that guanine N1 binds to [4Fe-4S] cluster II of the S-adenosylmethionine-dependent enzyme MoaA: mechanistic implications. J. Am. Chem. Soc. 131, 9184–9185 (2009).

    Article  CAS  Google Scholar 

  29. Zheng, B., Chen, X.D., Zheng, S.L. & Holm, R.H. Selenium as a structural surrogate of sulfur: template-assisted assembly of five types of tungsten-iron-sulfur/selenium clusters and the structural fate of chalcogenide reactants. J. Am. Chem. Soc. 134, 6479–6490 (2012).

    Article  CAS  Google Scholar 

  30. Wilker, J.J. & Lippard, S.J. Methylation of iron-sulfur complexes by trimethyl phosphate. Inorg. Chem. 38, 3569–3574 (1999).

    Article  CAS  Google Scholar 

  31. Petrey, D. & Honig, B. GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. Methods Enzymol. 374, 492–509 (2003).

    Article  CAS  Google Scholar 

  32. Iwig, D.F. & Booker, S.J. Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-L-methionine. Biochemistry 43, 13496–13509 (2004).

    Article  CAS  Google Scholar 

  33. Tse Sum Bui, B., Mattioli, T.A., Florentin, D., Bolbach, G. & Marquet, A. Escherichia coli biotin synthase produces selenobiotin. Further evidence of the involvement of the [2Fe-2S]2+ cluster in the sulfur insertion step. Biochemistry 45, 3824–3834 (2006).

    Article  Google Scholar 

  34. Syper, L. & Mlochowski, J. The convenient syntheses of organoselenium reagents. Synthesis, 439–442 (1984).

  35. Fish, W.W. Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol. 158, 357–364 (1988).

    Article  CAS  Google Scholar 

  36. Beinert, H. Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron sulfur proteins. Anal. Biochem. 131, 373–378 (1983).

    Article  CAS  Google Scholar 

  37. Then, J. & Truper, H.G. Sulfide oxidation in Ectothiorhodospira abdelmalekii—evidence for the catalytic role of cytochrome c-551. Arch. Microbiol. 135, 254–258 (1983).

    Article  CAS  Google Scholar 

  38. Pierrel, F., Hernandez, H.L., Johnson, M.K., Fontecave, M. & Atta, M. MiaB protein from Thermotoga maritima—characterization of an extremely thermophilic tRNA-methylthiotransferase. J. Biol. Chem. 278, 29515–29524 (2003).

    Article  CAS  Google Scholar 

  39. Gehrke, C.W. & Kuo, K.C. Ribonucleoside analysis by reversed-phase high-performance liquid-chromatography. J. Chromatogr. 471, 3–36 (1989).

    Article  CAS  Google Scholar 

  40. te Velde, G. & Baerends, E.J. Numerical integration for polyatomic systems. J. Comput. Phys. 99, 84–98 (1992).

    Article  CAS  Google Scholar 

  41. Vosko, S.H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations—a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

    Article  CAS  Google Scholar 

  42. Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  43. Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B Condens. Matter 33, 8822–8824 (1986).

    Article  CAS  Google Scholar 

  44. Szilagyi, R.K. & Winslow, M.A. On the accuracy of density functional theory for iron-sulfur clusters. J. Comput. Chem. 27, 1385–1397 (2006).

    Article  CAS  Google Scholar 

  45. Noodleman, L., Peng, C.Y., Case, D.A. & Mouesca, J.M. Orbital interactions, electron delocalization and spin coupling in iron-sulfur clusters. Coord. Chem. Rev. 144, 199–244 (1995).

    Article  CAS  Google Scholar 

  46. Acton, T.B. et al. Robotic cloning and protein production platform of the Northeast Structural Genomics Consortium. Methods Enzymol. 394, 210–243 (2005).

    Article  CAS  Google Scholar 

  47. Jansson, M. et al. High-level production of uniformly 15N- and 13C-enriched fusion proteins in Escherichia coli. J. Biomol. NMR 7, 131–141 (1996).

    Article  CAS  Google Scholar 

  48. Doublié, S. et al. Crystallization and preliminary X-ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl-SRP9. FEBS Lett. 384, 219–221 (1996).

    Article  Google Scholar 

  49. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr. A. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  50. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  51. McRee, D.E. XtalView Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  52. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Abramowitz and J. Schwanof for assistance with synchrotron data collection, B. Gibney for advice on Fe-S reconstitution for crystallization and R. Breslow for discussion of the reaction mechanism. We thank O. Hamelin for GC/MS analysis and J.-M. Moulis for providing 77Se (both from Chemistry and Biology of Metals Laboratory, Grenoble). This work was supported by the US National Institutes of Health Protein Structure Initiative grants U54-GM074958 and U54-GM094597 to the NeSG (http://www.nesg.org/), a Groupement d′Intérêt Scientifique–CNRS fellowship to S.A., Agence Nationale de la Recherche–Blanc 2010 grant INSERAD and Région Rhône-Alpes grant CIBLE 2008-2011.

Author information

Authors and Affiliations

Authors

Contributions

E.M., S.A., M.A. and M.F. designed the biochemical and enzymological experiments, which were conducted by E.M. and S.A. J.-M.M. and S.G. designed and conducted the EPR, HYSCORE and DFT experiments. S.K.-J. conducted the HPLC/MS experiments. T.B.A., R.X., J.F.H., J.S. and G.T.M. designed the target selection and protein purification–crystallization pipeline of the NeSG, which purified a wide variety of MTTases for this project. F.F., with advice from J.F.H., developed reconstitution methods for crystallization, which was performed by M.H. F.F. solved and refined related crystal structures. M.F., E.M., J.F.H., F.F., M.A. and G.T.M. interpreted the results, and M.F., E.M., J.F.H. and F.F. wrote the manuscript.

Corresponding authors

Correspondence to Etienne Mulliez, John F Hunt or Marc Fontecave.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Note 1 (PDF 3738 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forouhar, F., Arragain, S., Atta, M. et al. Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases. Nat Chem Biol 9, 333–338 (2013). https://doi.org/10.1038/nchembio.1229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing