Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis

Abstract

Liver X receptors (Lxrα and Lxrβ) are ligand-dependent nuclear receptors critical for ventral midbrain neurogenesis in vivo. However, no endogenous midbrain Lxr ligand has so far been identified. Here we used LC/MS and functional assays to identify cholic acid as a new Lxr ligand. Moreover, 24(S),25-epoxycholesterol (24,25-EC) was found to be the most potent and abundant Lxr ligand in the developing mouse midbrain. Both Lxr ligands promoted neural development in an Lxr-dependent manner in zebrafish in vivo. Notably, each ligand selectively regulated the development of distinct midbrain neuronal populations. Whereas cholic acid increased survival and neurogenesis of Brn3a-positive red nucleus neurons, 24,25-EC promoted dopaminergic neurogenesis. These results identify an entirely new class of highly selective and cell type–specific regulators of neurogenesis and neuronal survival. Moreover, 24,25-EC promoted dopaminergic differentiation of embryonic stem cells, suggesting that Lxr ligands may thus contribute to the development of cell replacement and regenerative therapies for Parkinson's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and characterization of Lxr-activating factors derived from the E11.5 mouse ventral midbrain.
Figure 2: CA and 24,25-EC specifically activate Lxrα and Lxrβ by binding to the LBD of Lxr.
Figure 3: 24,25-EC and CA increase transcript levels of dopaminergic neuronal markers and the number of diencephalic Th+ cells in zebrafish.
Figure 4: Differential effects of CA and 24,25-EC on cell survival and differentiation in mouse E11.5 ventral midbrain primary cultures.
Figure 5: 24,25-EC increases dopaminergic neurogenesis, whereas CA increases red nucleus neurogenesis.
Figure 6: 24,25-EC efficiently regulates the dopaminergic differentiation of mESCs.

Similar content being viewed by others

References

  1. Chawla, A., Repa, J.J., Evans, R.M. & Mangelsdorf, D.J. Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866–1870 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Bensinger, S.J. & Tontonoz, P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454, 470–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Alberti, S., Steffensen, K.R. & Gustafsson, J.A. Structural characterisation of the mouse nuclear oxysterol receptor genes LXRα and LXRβ. Gene 243, 93–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Edwards, P.A., Kennedy, M.A. & Mak, P.A. LXRs: oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascul. Pharmacol. 38, 249–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Zelcer, N. & Tontonoz, P. Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Invest. 116, 607–614 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu, X., Li, S., Wu, J., Xia, C. & Lala, D.S. Liver X receptors interact with corepressors to regulate gene expression. Mol. Endocrinol. 17, 1019–1026 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Janowski, B.A., Willy, P.J., Devi, T.R., Falck, J.R. & Mangelsdorf, D.J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 383, 728–731 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Janowski, B.A. et al. Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proc. Natl. Acad. Sci. USA 96, 266–271 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Viennois, E. et al. Targeting liver X receptors in human health: deadlock or promising trail? Expert Opin. Ther. Targets 15, 219–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Björkhem, I. Are side-chain oxidized oxysterols regulators also in vivo? J. Lipid Res. 50, S213–S218 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lehmann, J.M. et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem. 272, 3137–3140 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Fu, X. et al. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J. Biol. Chem. 276, 38378–38387 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, C. & Dahlman-Wright, K. Liver X receptor in cholesterol metabolism. J. Endocrinol. 204, 233–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Björkhem, I. & Diczfalusy, U. Oxysterols: friends, foes, or just fellow passengers? Arterioscler. Thromb. Vasc. Biol. 22, 734–742 (2002).

    Article  PubMed  CAS  Google Scholar 

  15. Schroepfer, G.J. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol. Rev. 80, 361–554 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Laffitte, B.A. et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc. Natl. Acad. Sci. USA 98, 507–512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Venkateswaran, A. et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα. Proc. Natl. Acad. Sci. USA 97, 12097–12102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Joseph, S.B., Castrillo, A., Laffitte, B.A., Mangelsdorf, D.J. & Tontonoz, P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9, 213–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. Nature 475, 524–527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Valledor, A.F. et al. Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc. Natl. Acad. Sci. USA 101, 17813–17818 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, L. et al. Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc. Natl. Acad. Sci. USA 99, 13878–13883 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sacchetti, P. et al. Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 5, 409–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Andersson, S., Gustafsson, N., Warner, M. & Gustafsson, J.A. Inactivation of liver X receptor β leads to adult-onset motor neuron degeneration in male mice. Proc. Natl. Acad. Sci. USA 102, 3857–3862 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zelcer, N. et al. Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors. Proc. Natl. Acad. Sci. USA 104, 10601–10606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fitz, N.F. et al. Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice. J. Neurosci. 30, 6862–6872 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kele, J. et al. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 133, 495–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y. et al. Targeted lipidomic analysis of oxysterols in the embryonic central nervous system. Mol. Biosyst. 5, 529–541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mano, N. et al. Presence of protein-bound unconjugated bile acids in the cytoplasmic fraction of rat brain. J. Lipid Res. 45, 295–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Gan, X. et al. Dual mechanisms of ABCA1 regulation by geranylgeranyl pyrophosphate. J. Biol. Chem. 276, 48702–48708 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Russek-Blum, N. et al. Dopaminergic neuronal cluster size is determined during early forebrain patterning. Development 135, 3401–3413 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, Y.C., Priyadarshini, M. & Panula, P. Complementary developmental expression of the two tyrosine hydroxylase transcripts in zebrafish. Histochem. Cell Biol. 132, 375–381 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Zetterström, R.H. et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250 (1997).

    Article  PubMed  Google Scholar 

  33. Bello, E.P. et al. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat. Neurosci. 14, 1033–1038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Parks, D.J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, H., Chen, J., Hollister, K., Sowers, L.C. & Forman, B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Song, C., Hiipakka, R.A. & Liao, S. Selective activation of liver X receptor α by 6α-hydroxy bile acids and analogs. Steroids 65, 423–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Song, C. & Liao, S. Cholestenoic acid is a naturally occurring ligand for liver X receptor α. Endocrinology 141, 4180–4184 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Goodwin, B.J., Zuercher, W.J. & Collins, J.L. Recent advances in liver X receptor biology and chemistry. Curr. Top. Med. Chem. 8, 781–791 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Gray, P.A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306, 2255–2257 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Tint, G.S., Yu, H., Shang, Q., Xu, G. & Patel, S.B. The use of the Dhcr7 knockout mouse to accurately determine the origin of fetal sterols. J. Lipid Res. 47, 1535–1541 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, C.L., Zou, Y., He, W., Gage, F.H. & Evans, R.M. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451, 1004–1007 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, S., Lee, B., Lee, J.W. & Lee, S.K. Retinoid signaling and neurogenin2 function are coupled for the specification of spinal motor neurons through a chromatin modifier CBP. Neuron 62, 641–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Környei, Z. et al. Astroglia-derived retinoic acid is a key factor in glia-induced neurogenesis. FASEB J. 21, 2496–2509 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. Berrodin, T.J. et al. Identification of 5,6-epoxycholesterol as a novel modulator of liver x receptor activity. Mol. Pharmacol. 78, 1046–1058 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Venteclef, N. et al. GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRβ in the hepatic acute phase response. Genes Dev. 24, 381–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, P., Chandra, V. & Rastinejad, F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72, 247–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clare, K., Hardwick, S.J., Carpenter, K.L., Weeratunge, N. & Mitchinson, M.J. Toxicity of oxysterols to human monocyte-macrophages. Atherosclerosis 118, 67–75 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Jakobsson, T. et al. GPS2 is required for cholesterol efflux by triggering histone demethylation, LXR recruitment, and coregulator assembly at the ABCG1 locus. Mol. Cell 34, 510–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Boergesen, M. et al. Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor in mouse liver reveals extensive sharing of binding sites. Mol. Cell. Biol. 32, 852–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Archer, A. et al. The Liver X-Receptor (Lxr) governs lipid homeostasis in zebrafish during development. Open J. Endocrine Metab. Diseases. 2, 74–81 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in Karolinska was supported by Hjärnfonden, European Union (Strokemap and NeuroStemCell projects), Swedish Foundation for Strategic Research (SRL Program), Karolinska Institutet (Strategic Research Program and Thematic Center in Stem Cells and Regenerative Medicine) and the Swedish Research Council (DBRM, 2008:2811, 2011-3116 and 3318). The authors are grateful to L. Jansson-Sjöstrand and J. Söderlund for technical assistance, A. Nanni for secretarial help and S. Yang for help with artwork. Work in Swansea was supported by funding from the UK Research Councils Biotechnology and Biological Sciences Research Council (BB/C515771/2, BB/C511356/1 and BB/I001735/1 to W.J.G. and BB/H001018/1 to Y.W.). S.T. was supported by the Swedish Medical Research Council and the Onassis Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.T. performed most of the experiments. Y.W. performed the HPLC and LC/MSn experiments. S.S.K. performed some of the zebrafish experiments. P.S. contributed to some luciferase assay and primary culture experiments. K.M.S. contributed to some luciferase assay experiments. K.B., J.K., M.G. and K.K. contributed to the HPLC and LC/MSn experiments. C.S. contributed to some of the mESC experiments. E.M.T. contributed to some of the ChIP experiments. J.-Å.G. and K.R.S. provided the Lxrα−/− Lxrβ−/− mice. P.E., J.S. and W.J.G. contributed to draw conclusions from experiments, supervision and provided intellectual input. E.A. contributed to experimental design, supervision, conclusions and coordinated experimental approaches and wrote the manuscript together with S.T.

Corresponding author

Correspondence to Ernest Arenas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 1666 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theofilopoulos, S., Wang, Y., Kitambi, S. et al. Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis. Nat Chem Biol 9, 126–133 (2013). https://doi.org/10.1038/nchembio.1156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1156

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research