Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation

Abstract

We sought new strategies to reduce amounts of the polyglutamine androgen receptor (polyQ AR) and achieve benefits in models of spinobulbar muscular atrophy, a protein aggregation neurodegenerative disorder. Proteostasis of the polyQ AR is controlled by the heat shock protein 90 (Hsp90)- and Hsp70-based chaperone machinery, but mechanisms regulating the protein's turnover are incompletely understood. We demonstrate that overexpression of Hsp70 interacting protein (Hip), a co-chaperone that enhances binding of Hsp70 to its substrates, promotes client protein ubiquitination and polyQ AR clearance. Furthermore, we identify a small molecule that acts similarly to Hip by allosterically promoting Hsp70 binding to unfolded substrates. Like Hip, this synthetic co-chaperone enhances client protein ubiquitination and polyQ AR degradation. Both genetic and pharmacologic approaches targeting Hsp70 alleviate toxicity in a Drosophila model of spinobulbar muscular atrophy. These findings highlight the therapeutic potential of allosteric regulators of Hsp70 and provide new insights into the role of the chaperone machinery in protein quality control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hip increases client protein ubiquitination and promotes AR112Q clearance.
Figure 2: YM-1 increases Hsp70 binding to a denatured substrate and competes with Hip for binding.
Figure 3: YM-1 increases client protein ubiquitination and diminishes AR112Q aggregation.
Figure 4: YM-1 increases Hsp70-dependent degradation of AR112Q.
Figure 5: Hsp70 allosteric activators rescue toxicity in Drosophila expressing AR52Q.
Figure 6: Model of the Hsp90- and Hsp70-based chaperone machinery and regulation of polyQ AR degradation.

Similar content being viewed by others

References

  1. Zoghbi, H.Y. & Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).

    CAS  PubMed  Google Scholar 

  2. Kennedy, W.R., Alter, M. & Sung, J.H. Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology 18, 671–680 (1968).

    CAS  PubMed  Google Scholar 

  3. Sobue, G. et al. X-linked recessive bulbospinal neuronopathy. A clinicopathological study. Brain 112, 209–232 (1989).

    PubMed  Google Scholar 

  4. Mhatre, A.N. et al. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nat. Genet. 5, 184–188 (1993).

    CAS  PubMed  Google Scholar 

  5. Lieberman, A.P., Harmison, G., Strand, A.D., Olson, J.M. & Fischbeck, K.H. Altered transcriptional regulation in cells expressing the expanded polyglutamine androgen receptor. Hum. Mol. Genet. 11, 1967–1976 (2002).

    CAS  PubMed  Google Scholar 

  6. Ranganathan, S. et al. Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 18, 27–42 (2009).

    CAS  PubMed  Google Scholar 

  7. McCampbell, A. et al. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202 (2000).

    CAS  PubMed  Google Scholar 

  8. Yu, Z., Wang, A.M., Robins, D.M. & Lieberman, A.P. Altered RNA splicing contributes to skeletal muscle pathology in Kennedy disease knock-in mice. Dis. Model Mech. 2, 500–507 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kemp, M.Q. et al. Impaired motoneuronal retrograde transport in two models of SBMA implicates two sites of androgen action. Hum. Mol. Genet. 20, 4475–4490 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pratt, W.B. & Toft, D.O. Regulation of signaling protein function and trafficking by the hsp90/hsp70–based chaperone machinery. Exp. Biol. Med. (Maywood) 228, 111–133 (2003).

    CAS  Google Scholar 

  11. Pratt, W.B., Morishima, Y., Peng, H.M. & Osawa, Y. Proposal for a role of the Hsp90/Hsp70–based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp. Biol. Med. (Maywood) 235, 278–289 (2010).

    CAS  Google Scholar 

  12. Pratt, W.B., Morishima, Y. & Osawa, Y. The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J. Biol. Chem. 283, 22885–22889 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas, M. et al. Pharmacologic and genetic inhibition of hsp90-dependent trafficking reduces aggregation and promotes degradation of the expanded glutamine androgen receptor without stress protein induction. Hum. Mol. Genet. 15, 1876–1883 (2006).

    CAS  PubMed  Google Scholar 

  14. Tokui, K. et al. 17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in a SBMA model mouse. Hum. Mol. Genet. 18, 898–910 (2009).

    CAS  PubMed  Google Scholar 

  15. Waza, M. et al. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat. Med. 11, 1088–1095 (2005).

    CAS  PubMed  Google Scholar 

  16. Kobayashi, Y. et al. Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J. Biol. Chem. 275, 8772–8778 (2000).

    CAS  PubMed  Google Scholar 

  17. Bailey, C.K., Andriola, I.F., Kampinga, H.H. & Merry, D.E. Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 11, 515–523 (2002).

    CAS  PubMed  Google Scholar 

  18. Adachi, H. et al. Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J. Neurosci. 23, 2203–2211 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Adachi, H. et al. CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. J. Neurosci. 27, 5115–5126 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Howarth, J.L., Glover, C.P. & Uney, J.B. HSP70 interacting protein prevents the accumulation of inclusions in polyglutamine disease. J. Neurochem. 108, 945–951 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Höhfeld, J., Minami, Y. & Hartl, F.U. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83, 589–598 (1995).

    PubMed  Google Scholar 

  22. Mayer, M.P., Brehmer, D., Gassler, C.S. & Bukau, B. Hsp70 chaperone machines. Adv. Protein Chem. 59, 1–44 (2001).

    CAS  PubMed  Google Scholar 

  23. Buchberger, A. et al. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J. Biol. Chem. 270, 16903–16910 (1995).

    CAS  PubMed  Google Scholar 

  24. Wang, A.M. et al. Inhibition of hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. J. Biol. Chem. 285, 15714–15723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Clapp, K.M. et al. C331A mutant of neuronal nitric-oxide synthase is labilized for Hsp70/CHIP (C terminus of HSC70-interacting protein)–dependent ubiquitination. J. Biol. Chem. 285, 33642–33651 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng, H.M. et al. Ubiquitylation of neuronal nitric-oxide synthase by CHIP, a chaperone-dependent E3 ligase. J. Biol. Chem. 279, 52970–52977 (2004).

    CAS  PubMed  Google Scholar 

  27. Bender, A.T., Demady, D.R. & Osawa, Y. Ubiquitination of neuronal nitric-oxide synthase in vitro and in vivo. J. Biol. Chem. 275, 17407–17411 (2000).

    CAS  PubMed  Google Scholar 

  28. Wadhwa, R. et al. Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res. 60, 6818–6821 (2000).

    CAS  PubMed  Google Scholar 

  29. Tikoo, A. et al. Treatment of ras-induced cancers by the F-actin–bundling drug MKT-077. Cancer J. 6, 162–168 (2000).

    CAS  PubMed  Google Scholar 

  30. Rousaki, A. et al. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol. 411, 614–632 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Morishima, Y. et al. Heme-dependent activation of neuronal nitric oxide synthase by cytosol is due to an Hsp70-dependent, thioredoxin-mediated thiol-disulfide interchange in the heme/substrate binding cleft. Biochemistry 50, 7146–7156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takeyama, K. et al. Androgen-dependent neurodegeneration by polyglutamine-expanded human androgen receptor in Drosophila. Neuron 35, 855–864 (2002).

    CAS  PubMed  Google Scholar 

  33. Burlison, J.A., Neckers, L., Smith, A.B., Maxwell, A. & Blagg, B.S. Novobiocin: redesigning a DNA gyrase inhibitor for selective inhibition of hsp90. J. Am. Chem. Soc. 128, 15529–15536 (2006).

    CAS  PubMed  Google Scholar 

  34. Evans, C.G., Chang, L. & Gestwicki, J.E. Heat shock protein 70 (hsp70) as an emerging drug target. J. Med. Chem. 53, 4585–4602 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Patury, S., Miyata, Y. & Gestwicki, J.E. Pharmacological targeting of the Hsp70 chaperone. Curr. Top. Med. Chem. 9, 1337–1351 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Roodveldt, C. et al. Chaperone proteostasis in Parkinson′s disease: stabilization of the Hsp70/α-synuclein complex by Hip. EMBO J. 28, 3758–3770 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shorter, J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS ONE 6, e26319 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Peng, H.-M., Morishima, Y., Pratt, W.B. & Osawa, Y. Modulation of the heme/substrate-binding cleft of neuronal nitric-oxide synthase regulates binding of Hsp90 and Hsp70 and nNOS ubiquitination. J. Biol. Chem. 287, 1556–1565 (2012).

    CAS  PubMed  Google Scholar 

  39. Morishima, Y. et al. CHIP deletion reveals functional redundancy of E3 ligases in promoting degradation of both signaling proteins and expanded glutamine proteins. Hum. Mol. Genet. 17, 3942–3952 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Baldo, B. et al. A screen for enhancers of clearance identifies huntingtin as an heat shock protein 90 (Hsp90) client protein. J. Biol. Chem. 287, 1406–1414 (2012).

    CAS  PubMed  Google Scholar 

  41. Petrucelli, L. et al. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet. 13, 703–714 (2004).

    CAS  PubMed  Google Scholar 

  42. Dou, F. et al. Chaperones increase association of tau protein with microtubules. Proc. Natl. Acad. Sci. USA 100, 721–726 (2003).

    CAS  PubMed  Google Scholar 

  43. Walcott, J.L. & Merry, D.E. Ligand promotes intranuclear inclusions in a novel cell model of spinal and bulbar muscular atrophy. J. Biol. Chem. 277, 50855–50859 (2002).

    CAS  PubMed  Google Scholar 

  44. Chang, L. et al. Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. Chem. Biol. 18, 210–221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang, L., Thompson, A.D., Ung, P., Carlson, H.A. & Gestwicki, J.E. Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). J. Biol. Chem. 285, 21282–21291 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanelakis, K.C. et al. hsp70 interacting protein Hip does not affect glucocorticoid receptor folding by the hsp90-based chaperone machinery except to oppose the effect of BAG-1. Biochemistry 39, 14314–14321 (2000).

    CAS  PubMed  Google Scholar 

  47. Miyata, Y. et al. High-throughput screen for Escherichia coli heat shock protein 70 (Hsp70/DnaK): ATPase assay in low volume by exploiting energy transfer. J. Biomol. Screen. 15, 1211–1219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Budnik, V. et al. Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg. Neuron 17, 627–640 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Freeman, M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660 (1996).

    CAS  PubMed  Google Scholar 

  50. Mahr, A. & Aberle, H. The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene Expr. Patterns 6, 299–309 (2006).

    CAS  PubMed  Google Scholar 

  51. Kawakami, M. et al. Structure-activity of novel rhodacyanine dyes as antitumor agents. J. Med. Chem. 41, 130–142 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Reddy, J. Diep and T. Washington for technical assistance and K. Takeyama (University of Tokyo) and the Bloomington Stock Center for fly strains. This work was initiated under a grant from the McKnight Foundation (to A.P.L.) and was supported by the US National Institutes of Health (NS055746, NS055746-04S1 to A.P.L.; NS059690 to J.E.G.; GM077430 to Y.O.; NS069844 to C.A.C.; NS32214 to D.E.M.; NS076189 to J.P.C.), the Muscular Dystrophy Association (MDA238924 to A.P.L.) and the US National Science Foundation (IOS-0842701 to C.A.C.).

Author information

Authors and Affiliations

Authors

Contributions

A.M.W., S.K., Y. Miyata, H.-M.P., J.P.C., W.B.P., Y.O., C.A.C., J.E.G. and A.P.L. designed the experiments. A.M.W., S.K., Y. Miyata, H.-M.P., J.P.C., T.K., X.L. and Y. Morishima performed the experiments. A.M.W., S.K., Y. Miyata, H.-M.P., J.P.C., T.K., W.B.P., Y.O., C.A.C., J.E.G. and A.P.L. interpreted the data. Y.O., J.E.G. and D.E.M. contributed reagents or analytical tools. A.M.W., W.B.P., J.E.G. and A.P.L. wrote the paper.

Corresponding authors

Correspondence to Jason E Gestwicki or Andrew P Lieberman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 9172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, A., Miyata, Y., Klinedinst, S. et al. Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 9, 112–118 (2013). https://doi.org/10.1038/nchembio.1140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing