Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical probes for histone-modifying enzymes

Abstract

The histone-modifying enzymes that catalyze reversible lysine acetylation and methylation are central to the epigenetic regulation of chromatin remodeling. From the early discovery of histone deacetylase inhibitors to the more recent identification of histone demethylase blockers, chemical approaches offer increasingly sophisticated tools for the investigation of the structure and function of these lysine-modifying enzymes. This review summarizes progress to date on compounds identified from screens or by design that can modulate the activity of classical histone deacetylases, sirtuins, histone acetyltransferases, histone methyltransferases and histone demethylases. We highlight applications of compounds to mechanistic and functional studies involving these enzymes and discuss future challenges regarding target specificity and general utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible histone acetylation catalyzed by histone acetyltransferases, classical histone deacetylases and sirtuins.
Figure 2: Reversible histone methylation catalyzed by histone methyltransferases, LSD1 demethylase and Jmj demethylases.
Figure 3: Selected classical histone deacetylase inhibitors.
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Goldberg, A.D., Allis, C.D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    CAS  PubMed  Google Scholar 

  2. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. How chromatin-binding modules interpret histone modifications. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Allfrey, V.G., Faulkner, R. & Mirsky, A.E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51, 786–794 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Murray, K. The occurrence of ε-N-methyl lysine in histones. Biochemistry 3, 10–15 (1964).

    CAS  PubMed  Google Scholar 

  5. Gershey, E.L., Vidali, G. & Allfrey, V.G. Chemical studies of histone acetylation. The occurrence of ε-N-acetyllysine in the f2a1 histone. J. Biol. Chem. 243, 5018–5022 (1968).

    CAS  PubMed  Google Scholar 

  6. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  7. Brownell, J.E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 (1996).

    CAS  PubMed  Google Scholar 

  8. Taunton, J., Hassig, C.A. & Schreiber, S.L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    CAS  PubMed  Google Scholar 

  9. Vetting, M.W. et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch. Biochem. Biophys. 433, 212–226 (2005).

    CAS  PubMed  Google Scholar 

  10. Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174–17179 (1990).

    CAS  PubMed  Google Scholar 

  11. Kijima, M., Yoshida, M., Sugita, K., Horinouchi, S. & Beppu, T. Trapoxin, an antitumor cyclic tetrapeptide, is an inhibitor of mammalian histone deacetylase. J. Biol. Chem. 268, 22429–22435 (1993).

    CAS  PubMed  Google Scholar 

  12. Finnin, M.S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193 (1999).

    CAS  PubMed  Google Scholar 

  13. Itoh, Y., Suzuki, T. & Miyata, N. Isoform-selective histone deacetylase inhibitors. Curr. Pharm. Des. 14, 529–544 (2008).

    CAS  PubMed  Google Scholar 

  14. Imai, S., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longetivity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    CAS  PubMed  Google Scholar 

  15. Tanny, J.C., Dowd, G.J., Huang, J., Hilz, H. & Moazed, D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99, 735–745 (1999).

    CAS  PubMed  Google Scholar 

  16. Blander, G. & Guarente, L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 73, 417–435 (2004).

    CAS  PubMed  Google Scholar 

  17. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    CAS  PubMed  Google Scholar 

  18. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).

    CAS  PubMed  Google Scholar 

  19. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    CAS  PubMed  Google Scholar 

  20. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    CAS  PubMed  Google Scholar 

  21. Culhane, J.C. & Cole, P.A. LSD1 and the chemistry of histone demethylation. Curr. Opin. Chem. Biol. 11, 561–568 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Paris, M., Porcelloni, M., Binaschi, M. & Fattori, D. Histone deacetylase inhibitors: from bench to clinic. J. Med. Chem. 51, 1505–1529 (2008).

    CAS  PubMed  Google Scholar 

  23. Vannini, A. et al. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl. Acad. Sci. USA 101, 15064–15069 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schuetz, A. et al. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem. 283, 11355–11363 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones, P.A. & Baylin, S.B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wong, J.C., Hong, R. & Schreiber, S.L. Structural basis for in-cell histone deacetylase paralog selectivity. J. Am. Chem. Soc. 125, 5586–5587 (2003).

    CAS  PubMed  Google Scholar 

  27. Estiu, G. et al. Structural origin of selectivity in class II-selective histone deacetylase inhibitors. J. Med. Chem. 51, 2898–2906 (2008).

    CAS  PubMed  Google Scholar 

  28. Hideshima, T. et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc. Natl. Acad. Sci. USA 102, 8567–8572 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tran, A.D. et al. DAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J. Cell Sci. 120, 1469–1479 (2007).

    CAS  PubMed  Google Scholar 

  30. Salisbury, C.M. & Cravatt, B.F. Optimization of activity-based probes for proteomic profiling of histone deacetylase complexes. J. Am. Chem. Soc. 130, 2184–2194 (2008).

    CAS  PubMed  Google Scholar 

  31. Guarente, L. & Picard, F. Calorie restriction–the SIR2 connection. Cell 120, 473–482 (2005).

    CAS  PubMed  Google Scholar 

  32. Guarente, L. Sirtuins in aging and disease. Cold Spring Harb. Symp. Quant. Biol. 72, 483–488 (2007).

    CAS  PubMed  Google Scholar 

  33. Wade, N. New hints seen that red wine may slow aging. New York Times 4, June 2008A1.

  34. Howitz, K.T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    CAS  PubMed  Google Scholar 

  35. Borra, M.T., Smith, B.C. & Denu, J.M. Mechanism of human SirT1 activation by resveratrol. J. Biol. Chem. 280, 17187–17195 (2005).

    CAS  PubMed  Google Scholar 

  36. Kaeberlein, M. et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038–17045 (2005).

    CAS  PubMed  Google Scholar 

  37. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122 (2006).

    CAS  PubMed  Google Scholar 

  38. Szewczuk, L.M., Lee, S.H., Blair, I.A. & Penning, T.M. Vinferin formation by COX-1: evidence for radical intermediates during co-oxidation of resveratrol. J. Nat. Prod. 68, 36–42 (2005).

    CAS  PubMed  Google Scholar 

  39. Milne, J.C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoff, K.G., Avalos, J.L., Sens, K. & Wolberger, C. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Structure 14, 1231–1240 (2006).

    CAS  PubMed  Google Scholar 

  41. Liu, Y. et al. A fasting inducible acetylase/deacetylase switch modulates gluconeogenesis through activator-coactivator exchange. Nature (in the press).

  42. Schmidt, M.T., Smith, B.C., Jackson, M.D. & Denu, J.M. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J. Biol. Chem. 279, 40122–40129 (2004).

    CAS  PubMed  Google Scholar 

  43. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    CAS  PubMed  Google Scholar 

  44. Fatkins, D.G., Monnot, A.D. & Zheng, W. Nε-thioacetyl-lysine: a multi-facet functional probe for enzymatic protein lysine Nε-deacetylation. Bioorg. Med. Chem. Lett. 16, 3651–3656 (2006).

    CAS  PubMed  Google Scholar 

  45. Smith, B.C. & Denu, J.M. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J. Biol. Chem. 282, 37256–37265 (2007).

    CAS  PubMed  Google Scholar 

  46. Bedalov, A., Gatbonton, T., Irvine, W.P., Gottschling, D.E. & Simon, J.A. Identification of a small molecule inhibitor of Sir2p. Proc. Natl. Acad. Sci. USA 98, 15113–15118 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grozinger, C.M., Chao, E.D., Blackwell, H.E., Moazed, D. & Schreiber, S.L. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276, 38837–38843 (2001).

    CAS  PubMed  Google Scholar 

  48. Hirao, M. et al. Identification of selective inhibitors of NAD-dependent deacetylases using phenotypic screens in yeast. J. Biol. Chem. 278, 52773–52782 (2003).

    CAS  PubMed  Google Scholar 

  49. Zhao, Y., Dai, X., Blackwell, H.E., Schreiber, S.L. & Chory, J. Sir1, an upstream component in auxin signaling identified by chemical genetics. Science 301, 1107–1110 (2003).

    CAS  PubMed  Google Scholar 

  50. Araki, T., Sasaki, Y. & Milbrandt, J. Increased nuclear NAD biosynthesis and SirT1 activation prevent axonal degeneration. Science 305, 1010–1013 (2004).

    CAS  PubMed  Google Scholar 

  51. Alcendor, R.R., Kirshenbaum, L.A., Imai, S., Vatner, S.F. & Sadoshima, J. Silent information regulator 2a, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ. Res. 95, 971–980 (2004).

    CAS  PubMed  Google Scholar 

  52. Outeiro, T.F. et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516–519 (2007).

    CAS  PubMed  Google Scholar 

  53. Swaminathan, V. et al. Small molecule modulators in epigenetics: implications in gene expression and therapeutics. Subcell. Biochem. 41, 397–428 (2007).

    CAS  PubMed  Google Scholar 

  54. Zheng, Y. et al. Selective HAT inhibitors as mechanistic tools for protein acetylation. Methods Enzymol. 376, 188–199 (2004).

    CAS  PubMed  Google Scholar 

  55. Stimson, L. et al. Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol. Cancer Ther. 4, 1521–1532 (2005).

    CAS  PubMed  Google Scholar 

  56. Mantelingu, K. et al. Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem. Biol. 14, 645–657 (2007).

    CAS  PubMed  Google Scholar 

  57. Morimoto, T. et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J. Clin. Invest. 118, 868–878 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chase, J.F.A. & Tubbs, P.K. Conditions for the self-catalysed inactivation of carnitine acetyltransferase. Biochem. J. 111, 225–235 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Parang, K. et al. Mechanism-based design of a protein kinase inhibitor. Nat. Struct. Biol. 8, 37–41 (2001).

    CAS  PubMed  Google Scholar 

  60. Lau, O.D. et al. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell 5, 589–595 (2000).

    CAS  PubMed  Google Scholar 

  61. Lau, O.D. et al. PCAF Histone acetyltransferase processing of a peptide substrate: kinetic analysis of the catalytic mechanism. J. Biol. Chem. 275, 21953–21959 (2000).

    CAS  PubMed  Google Scholar 

  62. Poux, A.N., Cebrat, M., Kim, C.M., Cole, P.A. & Marmorstein, R. Structure of the GCN5 histone acetyltransferase bound to a bisubstrate inhibitor. Proc. Natl. Acad. Sci. USA 99, 14065–14070 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zheng, Y. et al. Fluorescence analysis of a dynamic loop in the PCAF/GCN5 histone acetyltransferase. Biochemistry 44, 10501–10509 (2005).

    CAS  PubMed  Google Scholar 

  64. Thompson, P.R., Kurooka, H., Nakatani, Y. & Cole, P.A. Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity. J. Biol. Chem. 276, 33721–33729 (2001).

    CAS  PubMed  Google Scholar 

  65. Liu, X. et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451, 846–850 (2008).

    CAS  PubMed  Google Scholar 

  66. Zheng, Y. et al. Synthesis and evaluation of a potent and selective cell-permeable p300 histone acetyltransferase inhibitor. J. Am. Chem. Soc. 127, 17182–17183 (2005).

    CAS  PubMed  Google Scholar 

  67. Guidez, F. et al. Histone acetyltransferase activity of p300 is required for transcriptional repression by the promyelocytic zinc finger protein. Mol. Cell. Biol. 25, 5552–5566 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cleary, J. et al. Acetylation by P/CAF drives DEK into interchromatin granule clusters. J. Biol. Chem. 280, 31760–31767 (2005).

    CAS  PubMed  Google Scholar 

  69. Kenneth, N.S. et al. Activation of Pol III transcription by c-Myc involves selective acetylation of histone H3 and recruitment of TRAPP, GCN5, and TFIIIB. Proc. Natl. Acad. Sci. USA 104, 14917–14922 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, S. Histone methyltransferases, diet nutrients and tumour suppressors. Nat. Rev. Cancer 2, 469–476 (2002).

    CAS  PubMed  Google Scholar 

  71. Dirk, L.M. et al. Kinetic manifestation of processivity during multiple methylations catalyzed by SET domain protein methyltransferases. Biochemistry 46, 3905–3915 (2007).

    CAS  PubMed  Google Scholar 

  72. Diehl, F., Rössig, L., Zeiher, A.M., Dimmeler, S. & Urbich, C. The histone methyltransferase MLL is an upstream regulator of endothelial-cell sprout formation. Blood 109, 1472–1478 (2007).

    CAS  PubMed  Google Scholar 

  73. Greiner, D., Bonaldi, T., Eskeland, R., Roemer, E. & Imhof, A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3–9. Nat. Chem. Biol. 1, 143–145 (2005).

    CAS  PubMed  Google Scholar 

  74. Kubicek, S. et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell 25, 473–481 (2007).

    CAS  PubMed  Google Scholar 

  75. Isham, C.R. et al. Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood 109, 2579–2588 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Walsh, C.T. Suicide substrates, mechanism-based enzyme inactivators: recent developments. Annu. Rev. Biochem. 53, 493–535 (1984).

    CAS  PubMed  Google Scholar 

  77. Edmondson, D.E., Mattevi, A., Binda, C., Li, M. & Hubálek, F. Structure and mechanism of monoamine oxidase. Curr. Med. Chem. 11, 1983–1993 (2004).

    CAS  PubMed  Google Scholar 

  78. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    CAS  PubMed  Google Scholar 

  79. Forneris, F., Binda, C., Vanoni, M.A., Battaglioli, E. & Mattevi, A. Human histone demethylase LSD1 reads the histone code. J. Biol. Chem. 280, 41360–41365 (2005).

    CAS  PubMed  Google Scholar 

  80. Lee, M.G., Wynder, C., Schmidt, D.M., McCafferty, D.G. & Shiekhatter, R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol. 13, 563–567 (2006).

    CAS  PubMed  Google Scholar 

  81. Schmidt, D.M. & McCafferty, D.G. trans-2-Phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry 46, 4408–4416 (2007).

    CAS  PubMed  Google Scholar 

  82. Yang, M. et al. Structural basis for inhibition of the LSD1 histone demethylase by the antidepressant trans-2-Phenylcyclopropylamine. Biochemistry 46, 8058–8065 (2007).

    CAS  PubMed  Google Scholar 

  83. Mimasu, S., Sengoku, T., Fukuzawa, S., Umehara, T. & Yokoyama, S. Crystal structure of histone demethylase LSD1 and tranylcypromine at 2.25 A. Biochem. Biophys. Res. Commun. 366, 15–22 (2008).

    CAS  PubMed  Google Scholar 

  84. Culhane, J.C. et al. A mechanism-based inactivator for histone demethylase LSD1. J. Am. Chem. Soc. 128, 4536–4537 (2006).

    CAS  PubMed  Google Scholar 

  85. Szewczuk, L.M. et al. Mechanistic analysis of a suicide inactivator of histone demethylase LSD1. Biochemistry 46, 6892–6902 (2007).

    CAS  PubMed  Google Scholar 

  86. Yang, M. et al. Structural basis for histone demethylation by LSD1 revealed by suicide inactivation. Nat. Struct. Mol. Biol. 14, 535–539 (2007).

    CAS  PubMed  Google Scholar 

  87. Ramanathan, S.K. et al. Modular synthesis of cyclic peptidomimetics inspired by γ-turns. Org. Lett. 7, 1059–1062 (2005).

    CAS  PubMed  Google Scholar 

  88. Forneris, F., Binda, C., Adamo, A., Battaglioli, E. & Mattevi, A. Structural basis of LSD1-CoREST selectivity in histone H3 recognition. J. Biol. Chem. 282, 20070–20074 (2007).

    CAS  PubMed  Google Scholar 

  89. Huang, Y. et al. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc. Natl. Acad. Sci. USA 104, 8023–8028 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Osborne, T., Roska, R.L., Rajski, S.R. & Thompson, P.R. In situ generation of a bisubstrate analogue for protein arginine methyltransferase 1. J. Am. Chem. Soc. 130, 4574–4575 (2008).

    CAS  PubMed  Google Scholar 

  91. Luo, Y., Knuckley, B., Bhatia, M., Pellechia, P.J. & Thompson, P.R. Activity-based protein profiling reagents for protein arginine deiminase 4 (PAD4): synthesis and in vitro evaluation of a fluorescently labeled probe. J. Am. Chem. Soc. 128, 14468–14469 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu, M., de Carvalho, L.P., Sun, G. & Blanchard, J.S. Activity-based substrate profiling for Gcn5-related N-acetyltransferases: the use of chloroacetyl-coenzyme A to identify protein substrates. J. Am. Chem. Soc. 128, 15356–15357 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hwang, Y. et al. Selective chemical probe for coenzyme A-requiring enzymes. Angew. Chem. Int. Edn Engl. 46, 7621–7624 (2007).

    CAS  Google Scholar 

  94. Sachchidanand et al. Target structure-based discovery of small molecules that block human p53 and CREB binding protein association. Chem. Biol. 13, 81–90 (2006).

    CAS  PubMed  Google Scholar 

  95. Shogren-Knaak, M. et al. Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    CAS  PubMed  Google Scholar 

  96. Thompson, P.R. et al. Regulation of p300 HAT domain via a novel activation loop. Nat. Struct. Mol. Biol. 11, 308–315 (2004).

    CAS  PubMed  Google Scholar 

  97. Simon, M.D. et al. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128, 1003–1012 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. McGinty, R.K., Kim, J., Chatterjee, C., Roeder, R.G. & Muir, T.W. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453, 812–816 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin, C.W., Jao, C.Y. & Ting, A.Y. Genetically encoded fluorescent reporters of histone methylation in living cell. J. Am. Chem. Soc. 126, 5982–5983 (2004).

    CAS  PubMed  Google Scholar 

  100. Shogren-Knaak, M.A., Alaimo, P.J. & Shokat, K.M. Recent advances in chemical approaches to the study of biological systems. Annu. Rev. Cell Biol. 17, 405–433 (2001).

    CAS  Google Scholar 

  101. Qiao, Y., Molina, H., Pandey, A., Zhang, J. & Cole, P.A. Chemical rescue of a mutant enzyme in living cells. Science 311, 1293–1297 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to members of my group past and present, as well as many collaborators in this field for many helpful discussions and for their key roles in the work cited. I also thank the US National Institutes of Health, the Flight Attendant Medical Research Institute and the Kaufman Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A Cole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, P. Chemical probes for histone-modifying enzymes. Nat Chem Biol 4, 590–597 (2008). https://doi.org/10.1038/nchembio.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing